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1. Introduction 

In large following waves there exist some interesting analogies between the dynamic 

behaviour of a steered ship in the yaw and roll directions. It is well known, for example, 
that capsize may occur due to fluctuations of the roll righting-arm [l]. Similar 
fluctuations in the stiffhess term may take place also in yaw, originating from the 

combined effect of rudder control with the wave induced yaw moment. This may give 
rise to course instability which will be realized as deviation fiom the desired heading 
and broaching [2]. 

Consider a ship traveling in long following sinusoidal waves. In order to avoid 

coupling complications let us assume fbrther that, due to high natural frequencies in 

heave and in pitch compared to the encounter frequency, the ship can maintain a state of 

quasi-static equilibrium on the vertical plane. If the waves are relatively steep, the 

geometry of the submerged part of the hull will vary noticeably, on the basis of the 

ship's position on the wave. This will be reflected in roll's righting-arm. Reduced or 

even negative roll restoring may arise when the middle of the ship is near to a wave 

crest, due to substantial "loss of waterline" (typically such a trend is more pronounced 
when there is low fieeboard at midship combined with strong flare at the ends [3]). If 
roll restoring remains negative for sufficient time, so that heel finds the time to develop 

unopposed well beyond the "vanishing angle", then capsize due to the so-called pure- 

loss of stability mechanism will be realised [4]. In this case the magnitude of roll 
damping affects little the survivability of the ship. Capsize can occur of course also in a 
typical parametric resonance fashion and here damping will be much more important 
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[5]. Practically, the variation of restoring must be however quite intensive, so that large 
amplitude roll can build-up within a small number of wave cycles. 

The onset of yaw instability, in a similar wave environment, is a slightly more 

complex process because yaw is always coupled with sway. Furthermore, a control law 
for the rudder must be considered. Unlike with roll, if there is no active control in yaw, 

no restoring force exists in still water; but this may be created by the movement of the 

rudder which tends to bring the ship back on the correct course. If waves of length 
equal to the ship length or longer meet the ship from behind, they will create a moment 
that will be dependent on the angle between the direction of wave propagation and the 

ship's heading. This wave yaw moment works as a positive restoring component when 
the ship passes from crests (stabilizing effect). The opposite will be realized however in 
the vicinity of wave troughs where the waves will tend to orientate the ship 

perpendicular to the direction of their propagation. The relative magnitudes of the 
rudder's and the wave's moment will determine whether restoring becomes, in the 
region of the wave trough, negative. But even if it remains positive, a parametric 
mechanism with the potential to destabilize the horizontal-plane motion of the ship will 
have been set in place. The cornrnonality of the underlying dynamics of yaw and roll is 

prevalent. 

Our first objective in this paper is to identify the correspondence between yaw and 
roll parameters from the perspective of these Mathieu-type phenomena. Furthermore, 
we shall introduce an approach for assessing the effect of surge motion. As is well 

known, when the waves are large, the nonlinearity of surge cannot be neglected [6]. A 

manifestation of this nonlinearity, is a virtual rescaling of time as the ship is spending 
longer time on the crests than on the troughs of the wave. In spite of the significance of 
this mechanism for the safety-critical motions, there has been no systematic analysis 
earlier on it. 

2. Equations of motion for yaw and for roll 

Consider the linear differential equations of sway and yaw [7], with the addition of 

wave excitation terms at their right-hand side: 

sway: ( m ' - ~ ~ ) + ' - ~ ~ v ' + ( m ' x ~ - ~ ~ ) i ' + ( r n ' - ~ ~ ) r ' = Y ~ 6 + Y i , , )  (1) 

' - N I ) + ' - N : v ' + ( I :  - N i ) i 1 + ( m ' x b  - N : ) r l =  N;G +N;,,, ~ a w :  (m'x, (2) 

In the above v ,  r  are respectively sway velocity and yaw angular velocity, 6 is the 

rudder angle, m' is ship mass and X ,  is the longitudinal position of the centre of 



gravity; K ,  q ,  Ni , Ni are acceleration coefficients (added masses1moments of inertia) 

and Y,:, Yrt , N: , N: , Y, are velocity coefficients (hydrodynamic damping terms). The 

wave's sway force and yaw moment are respectively, N;,,,. The prime 

indicates nondimensionalised quantity and the overdot differentiation over time. 
At first instance we shall assume that the yaw and sway velocities are restrained from 

building-up to high values' (thus 'they remain small; as a matter of fact the resulting 
damping forces may be considered linear) through use of appropriate rudder control. 
Additionally, ship behaviour is examined at "some distance" from the region of surf- 
riding, so that, for this first part of the paper, it is not unrealistic to assume that surge 
velocity is constant. 

We express the wave terms G , ) ,  N;,, in respect with the frequency of encounter 
(rather than as functions of absolute wave frequency and position). Also we neglect 
some phase difference (relatively to the wave) which might exist in these two types of 
excitation: 

q',,, = Y; ry sin(@: t ') (3) 

N;wave, = Nk y/ cos(w: t ') (4) 

The following notation is applied: Y; , Nk are wave forcelmoment coefficients; y/ is 
the ship's heading relatively to the wave (ry = 0 when the sea is exactly following - 
generally, ry is assumed small). 

Consider further rudder control with a linear law based on two gains, k,  and k ,  : k, 
multiplies the instantaneous heading deviation from the desired course ryr , while k ,  
multiplies yaw's angular velocity: 

Substituting (3), (4) and (5) in (1) and (2), uncoupling yaw from sway and using well 
known expressions for system gain and time constants, K', T,', T,', T,' [7], a 
differential equation of heading angle with the following structure is obtained: 

The above third-order differential equation has time-dependent coefficients in two 
places. As is well known however, if q' is much greater than T,' and T; , we can use the 
so-called simplified yaw response model of Nomoto [8]. In that case the order of 
equation (6) is reduced by one: 



K',Ttare respectively system gain and time constants, y is relative heading angle 
(assumed small), S is rudder angle, A' is wave excitation amplitude, is the 
encounter frequency and a is a phase angle. 

By coupling (7) with the autopilot equation (5) and dropping for simplicity the phase 

angle a ,  we obtain after some rearrangement: 

In the above m :( yaw , = ,/m, y =(l+k;~') /~ '(damping),  h = A ' / k , ~ '  

(amplitude of parametric variation of restoring), j = k1Ktry, /T'. It is easily recognized 

that (8) is Mathieu's equation with the addition however of bias-like external static 

forcing term, j . 
For stability, positive T' is required as l/Tt is the inverse of the damping of the 

unsteered vessel. However, large positive T' implies slow convergence towards the 
corresponding steady rate-of-turn which is determined by the value of the static gain 
K ' .  A trend exists for large T' to appear in conjunction with large K' which gives a 

nearly straight-line spiral curve. The effect of active control on damping is represented 
by the quantity k; K'/T' . It depends thus on the yaw rate ("differential") gain term in 
the autopilot. If T' c 0, suitable choice of ki can turn the damping of the system 
positive since k; multiplies the positive quantity K'/T', thereby yielding stability for 

the steered ship in calm sea. The wave effects are lumped into the restoring and 

independent-periodic-forcing terms since the quantities K' and T' were assumed to be, 
at first approximation, unaffected by the wave. If the amplitude of wave excitation A' 
exceeds k,K' , then on the basis of (1 1) negative yaw restoring will arise around the 
trough. Should the duration of operation under negative restoring be long enough, 
undesired turning motion will be initiated ('bbroaching"). From a dynamics perspective 

there is complete equivalence with a capsize event of the so-called "pure-loss" type. It 
can be avoided if the proportional gain kl is chosen to be always greater than AYK' 
even for the most extreme wave environment where the ship will operate (it should be a 
matter of further investigation to what extend this is technically feasible). A notable 

difference between the manifestation of this instability in roll and in yaw is that in roll it 
arises near the crest of the wave, whereas in yaw the ship becomes vulnerable near a 
trough. 

We may rewrite (8) on the basis of heading error ry, = ry - ry, and then apply the 

transformation f = w&yaw, 1' : 
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where Q = o:/oA(ya, and h = A' l(k,  K ' ) .  Also, f = A' /(T' ob (,,, ) which means 

that for vr = 0 the external forcing term of (9) will be zero. The damping ratio is given 

by the expression: 25. = (l + k , ~ ' ) / , / ~  (the presence of k ,  inside 5. should be 

noted). 

It is obvious from (9) that parametric instability of yaw may also arise, very much 

like that of roll. To establish the analogy we remind that the generic linearised in x 

equation of roll for a following sea is: 

q' is the normalised roll angle, p' = q/q,, , with p the true roll angle and qv the angle 

of vanishing stability. Although for the damping ratio, scaled time, amplitude of forcing 

and frequency ratio we have used the same symbols as in roll, the expressions from 

which we derive their values will be of course different in the yaw case. The damping 

ratio will be: 26 = B m,(,, / (M g (GM)) where B is the dimensional linear damping 

coefficient, M is ship mass and (GM) is the metacentric height. Also, R = o:/o:,,, 

and r = oO(rO1l, t , with roll's natural frequency given by oo(roll.,,, = J M ~  (GM)/(I +M) . 

With substitution of 0,(,, in c we may obtain further: 2 5  = B / ~ ( I  + AI) M g (GM) . 
Also, the amplitude of the parametric is h = G(GM)/(GM) where ~ ( G M )  is the 

difference in the values of metacentric height at the crest and in still water. This is a 

common assumption which may be sufficient for the preliminary character of this study 

but of course it results in a highly idealised formulation because the average (GM) has 

no reason to be identical with the still water (GM). In addition, the variation from 

trough to crest may not be sinusoidal. 

2.1. CONDITIONS AT EXACT RESONANCE 

For overtaking waves the frequency of encounter will be positive and for the case 
where no damping exists the condition of exact resonance will be: o,/o, = 2/q, 
11 = 1,2,3, ... ( a ,  may be the frequency of encounter of yaw or of roll). Thus with 



increasing 77 the vertices will tend to accumulate nearer to the zero frequency of 

encounter. 

The expression of .the encounter frequency for a following sea is 

we = (2rr/l)(c-U). In yaw, time is commonly nondimensionalised on the basis of 

U/L (noted the resulting time-dependence). Therefore, the expression of the 

nondimensional frequency of encounter in yaw is: o: = 2 x ~ ( c  - u)/(Au). With the 

substitutions w: = 2w;(,, /I] and c/U = Fn wave /Fn ( Fn,, is the Froude number 

corresponding to wave celerity) the parametric equation of the vertices of the 

corresponding undamped system is Fn = Fn ,, /(l + lo;( ,, A) ,. Given that 

Fn wave = ,/m we may write further: 

Consider further the domain of variation for the yaw natural frequency, which, as 

was found earlier, is expressed as: o i(yaw) = ,/k, K ' I T  ' . It is known that for 

conventional ships, the ratio K1/T' usually takes values within the range [0.3 - 1.41 (see 

for example [9]). It is derived that o;(,, should lie in the range [0.55& - 1. IS&]. 

With a proportional gain k, between 1.0 and 2.0, obyaw, should then be between 0.55 

and 1.67 . In Fig. l a is shown how the critical Fn would vary as function of the wave 

length-to-ship-length ratio AIL , for three different values of : 0.5, 1.0 and 1.5 . 

We shall consider now roll motion: The natural frequency is nondimensionalised on 

the basis of ship length and acceleration of gravity, o; = o , , / ~ / ~  (thus it is not speed 

dependent, at least in an explicit sense). The difference in the nondimensionalisation 

method between yaw and roll results in different parametric expressions of the critical 

Froude number: 

It is well known that container vessels are sometimes susceptible to parametric 
resonance, one of the reasons being that their operational speed falls near to the region 

of principal resonance which is the most dangerous. Extensive model tests have been 
carried out recently in Japan in order to identify the critical conditians for capsize. The 
occurrence of parametric instability was one of the investigated scenarios [10]. For an 



examined containership the measured natural frequency was = 0.566. In Fig. lb  
are shown, for a range of roll natural frequencies, the critical Froude numbers for the 
first few resonances (as for the similar equation for yaw, damping is not included). 

We should note that, unlike the parametric instability of roll which is well verified 
experimentally, for yaw little has been attempted so far on the experimental fiont. 

(a) for yaw (b) for roll 

Fig. 1 :  Critical Froude numbers for stability of idealised undamped system. We varied the pair (o: ,v) 
where U: is the corresponding nondirnensional natural frequency, and 7 is the order of the 

resonance. 

2.2. MAGNITUDE AND EFFECT OF DAMPING 

Even when a ship is equipped with bilge keels and fins, the damping ratio is usually 
quite low and very rarely goes above a value of, say, 0.2 (it should be noted however 
that 6 depends not only on the hydrodynamic characteristics of the hull but also on 
factors such as the metacentic height and the moment of inertia).For yaw on the other 
hand, the damping ratio depends strongly on the autopilot's gains. Common values are 
known to be in the range 0.8 < 6 < 1.0 [l l]. Here lies therefore a very significant 
difference between the roll and yaw equations: The damping ratio of yaw is normally 

very large. This practically means that in order to be placed in a resonance region, the 
loss of yaw restoring at the trough should be very considerable. Usually the requirement 
implied by this is the existence of very steep waves. It is very interesting, and perhaps 
relevant, that about 40 years ago, during model experiments of broaching, it had been 
observed that as the encounter frequency dep&s from the zero value, the required wave 
steepness for broaching shows a very considerable increase [l 21. 



While expressions of the stability boundary are not so difficult to find for relatively 

low damping, see for example [13], the same may not be said for the very large 6 
appearing in the yaw equation. As a first indication of the effect of <on the critical h 

we may use the expression of Gunderson, Rigas & VasnVleck (1974) which is 

applicable for relatively large damping values: 

For 6 as low as 0.3 the required h ,  according to (12), is 0.67 and 0.87 respectively 
for the principal and the fundamental resonance. One should bear in mind however that 
these values reflect long-term behaviour. For the build-up of significant motion within a 
small number of wave cycles (in a practical context this is most relevant) considerably 

higher values of h are required. 

2.3. NONLINEARITY . 
In the roll equation nonlinearity exists in the restoring term (strong) and in damping 

(mild). Their effect is now relatively well understood, see for example [l 0, 13-1 61. 

In yaw, nonlinearity is possible to appear in the damping term if the yaw velocity is 

allowed to become large (for example when the autopilot gain values are low). This 
relates with the S-shaped curve ("spiral curve") connecting the steady rate-of-turn with 
the angle of the rudder in still water for directionally unstable ships. It is common to 

take account of this nonlinearity through a cubic term of yaw velocity. After coupling 
with the autopilot equation we obtain the following nonlinear version of equation (8) 
which is left for future consideration: 

3. Static and dynamic loss of stability 

When roll stability in a following sea is examined, it is customary in naval 
architecture to distinguish between two mechanisms of capsize: (a) Pure-loss of 

stability, where the ship departs from the state of upright equilibrium due to negative 

restoring on a wave crest. Then, heel increases monotonically until the ship is 
overturned. In this mode the magnitude of damping plays little role. (b) Parametric 
instability, which is the classical Mathieu-type mechanism where the build-up is 



oscillatory and the magnitude of 
damping is very important. In Fig. 
2 are shown the domains of pure 
loss and of parametric instability 
for a ship with a generic cubic-type 

restoring curve and with linear 

damping. 
Instabilities of a similar nature 

are possible in yaw as well, 
resulting in broaching behaviour 
(sudden turn and deviation from 
the desired course). Especially the 
instability usually termed as 
broaching due to surf-riding, 
happening at Froude numbers near 
to the wave celerity, may be 
paralleled with the pure-loss 

A parametric-type mechanism 
Fig. 2: A 'unifying' view of the domains of "pure loss" of broaching also exists, which is 

and of parametric instability for cubic-type 
restoring. "Pure loss" occupies the upper and left more likely to happen at lower 
part of the parametric instability domain. Froude numbers [12]. For this 

mechanism the discussion given in 
sub-section (2.2) is most relevant. Higher wave steepness is required for the occurrence 
of this instability due to the dominant effect of the large damping factor. 

4. The effect of surge 

We shall consider now the effect of surge motion for pure-loss and for parametric 
instability. An implicit assumption in our analysis so far, and also underpinning all 
earlier studies on ship parametric instability, has been that the forward speed may be 
assumed as constant. Such an assumption is not however always consistent with the 
wider context of the analysis. For dangerous dynamic behaviour of roll to arise, steep 
and long waves are required. Waves of this kind will incur also significant nonlinear 
effects on surge. The characteristic of large-amplitude surging is that it is asymmetric 
and the ship stays longer near the crests than near the troughs. This effect is imported 



into the yaw and roll dynamics through the restoring terms of the corresponding 

equations. 
Consider the roll motion first: The nonlinearity of surge is detrimental for stability 

because around the crest (where the ship stays longer) restoring capability is reduced. 
For yaw on the other hand, the effect is opposite. Yaw stability is not worsened because 

the passage of the ship fiom the trough is quicker. The danger arises in steeper waves 
and especially during the process of capture in surf-riding, Fig. 3. 

Fig. 3: Parametric instability and capsize due to large amplitude surging (very near to the boundary 
of surf-riding). Time-domain plots of surge velocity (left) and roll angle (right). The ship was 
initially with zero velocity at a crest. 

The three main forces acting in the surge direction are the resistance, the wave and 
the propulsion force. As has been shown in [l71 these forces result in the following 
differential equation for the surge motion: 

d 2~ dx 
(m - X")- + {[3a3c2 + 2(a2 - bl)c + a,] - b2n)- + 

dt dt 
dx dx 

+[3a3c + (a, - b,)](-)' + a, (-)3 + f sin(b) = 
dt dt 

-XU is the surge added mass, c is the wave celerity, n is the propeller's rate of 
rotation, X is the position of the ship on the wave measured fiom a moving system fixed 

on a wave trough; a , ,  a, ,  a ,  are the coefficients of the resistance polynomial. 
Likewise, b, , b2 , b, are the thrust-related coefficients. The velocity U of the ship for an 

observer fixed on the earth is given fiom the relation u = c - W d t  . 



Equation (14) is to be solved 
simultaneously with the equation 
of yaw or of roll, depending on 
whether the capsize or the 
broaching problem is considered. 
We have identified how the 
transition curves are modified 
when roll is coupled with surge. 
This coupling arises due to the 

existence of x in the restoring 
term of the roll equation: 

0.9 - @' + 2p @' + oi [l - h c o s ( k ~ ) ] ~ '  = 0 
0.1 0.15 0.2 0.25 0.3 0.35 

Fn 
(15) 

On the basis of the above 

equation we have found for what 

Fie. 4: Boundary lines of capsize due to parametric type of Fn and h the 
instability when the nonlinear surge is taken into roll angle exceeded 
account. The upper-right boundary separates 
capsize fiom surf-riding. The other boundaries are the value of 1.0 (fiom an initial 
inierfaces with domains of ordinary periodic pembation 0.01 and with zero 
motion in surge. 

initial velocity) within a specified 

time ( t  = 200 S). The calculations 

were based on a ship with m,(,,,, = 0.84 (m: ,,,, = 1.577 ) and p = 0.0585 . Of course, 

having exceeded the value 1.0 does not necessarily mean capsize, since we may still lie 

inside the safe basin. But for a practical analysis this is a good basis for comparisons. 

Fig. 4 provides clear evidence that surge motion has a profound effect on the "capsize" 

domains. Further investigations are currently underway on this matter. For the 

considered ship, the principal resonance could not be realised in following waves 

because a negative Froude number is required for this (the ship should be backing rather 

than going forward). The lower part of the fundamental is the only place where there is 

some cornrnonality with the conventional ('damped') Strutt diagram. The upper part of 

the fundamental has become considerably wider. The next resonance occupies an 

enlarged domain; but the two after this seem to degenerate. This may relate with the 

emergence of the surf-riding domain where the behaviour of the ship is stationary. 



There, the ship will travel with the speed of the wave, having its middle located near to 

a trough. 
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