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ABSTRACT 

Dynamical aspects related to the application of the split-

time method for the probabilistic assessment of ship dy-

namic stability failure caused by pure loss of stability 

and broaching-to are considered.  Changes of stability in 

waves can cause a large roll angle by the timing of those 

changes, even if the duration of the stability degradation 

is not very long.  An idea for a metric of the likelihood of 

stability failure is introduced.  For pure loss of stability, 

the difference between the critical and instantaneous roll 

rates at the instant of upcrossing of an intermediate level 

has been found to be an effective metric.  This metric can 

be related to Euler’s definition of ship stability and, in 

general, to the definition of stability in mechanics. 

The consideration of broaching-to focuses on surf-

riding in irregular waves.  A new method is considered 

for the calculation of the wave celerity in irregular 

waves, based on the concept of instantaneous frequency.  

The new scheme provides a smoother time history in 

comparison to a previous scheme that was based on the 

propagation speed of characteristic features of the wave 

profile.  Irregular waves render the phase flow associated 

with ship surging and surf-riding time-dependent.  The 

method of “Feature Flow Field” is introduced for effec-

tively analyzing it.  The candidate for a metric of the 

likelihood of surf-riding is the straight line distance, in 

the phase plane, between the state of a ship and the stable 

surf-riding equilibrium at that instant. 

INTRODUCTION 

This paper examines two modes/scenarios of dynamic 

stability failures: pure loss of stability and broaching-to 

preceded by surf-riding.  Pure loss of stability is a result 

of the deterioration of stability when a ship is positioned 

on a wave crest.  Surf-riding is a phenomenon of the 

ship’s acceleration to wave celerity when a wave “cap-

tures” the ship on its front slope.  At times, a ship may 

not be directionally stable while surf-riding, and the ship 

could experience broaching-to—a phenomenon of a vi-

olent turn despite maximum steering effort—that may 

induce a large roll angle or even capsizing. 

Dynamic stability failures in following and quar-

tering seas may occur through a variety of scenarios.  

All of them are considered to be complex and difficult 

to analyze, even in regular waves.  For example, 

broaching-to in regular, stern quartering waves requires 

the study of dynamics in multi-dimensional phase-

space (Spyrou, 1996).  A mathematical model of four 

ordinary differential equations (ODE), which can be 

considered as the minimum for capturing the essential 

phenomena, provides very rich dynamics because a 

number of bifurcations can arise in such a dynamical 

system. 

However, mathematical models based on ODEs 

serve only as a rough approximation of ship dynamics.  

Advanced numerical codes (Beck and Reed 2001) po-

tentially provide a more realistic description of ship 

motion, though at the expense of introducing further 

complexity to an already complex dynamical system.  

Key features of the advanced models are the insep-

arability of excitation and stiffness and the hydrody-

namic memory effect.  Nonetheless, one can still apply 

the analysis tools of nonlinear dynamics and the result 

has been shown to be qualitatively very similar to the 

ODE solution (Spyrou et al. 2009).  The hydrodynamic 

memory effect may be treated in ODEs by including 

additional degrees of freedom (Spyrou and Tigkas 

2011). 

Accounting for irregular waves in the 

mathematical model of broaching-to generates a whole 

new series of issues.  To begin with, the problem must 

be considered simultaneously in time and in space, 

whereas spatial consideration is sufficient in regular 

waves.  The state of surf-riding becomes a “quasi-

equilibrium” as it appears and disappears randomly 

(Belenky, et al., 2013).  Moreover, wave celerity in 

irregular waves becomes random and the evaluation of 

a condition of capture based on it becomes an 

intriguing problem (Spyrou, et al., 2014). 

The complexities of modeling for pure loss of sta-

bility are also related with the randomness of irregular 

waves.  The calculation of stability changes in regular 

waves does not pose a technical problem and has been 

included in many hydrostatic software packages, and 

the calculation of the time-varying roll restoring (GZ) 



 

curve in irregular wave simulations has been demon-

strated (Belenky, et al., 2010).  However, the develop-

ment of an ODE-like model of the stability changes has 

not proved to be viable (see the next section), so hydro-

dynamic analysis cannot be effectively performed with a 

purely ODE-based model. 

The split-time method may be seen as a way of han-

dling complex dynamical systems when the probability 

of a specific rare event must be found.  While the method 

has evolved significantly over the course of its develop-

ment (Belenky, et al., 2008, 2010, 2013), the principal 

idea remains unchanged.  This idea is to separate a com-

plex problem in two, less complex elements.  The first 

problem is to estimate an upcrossing through an interme-

diate level (“non-rare” problem), while the second is to 

determine the probability of a rare event (capsize or at-

traction of surf-riding equilibrium) once the upcrossing 

occurs (“rare” problem). 

Figure 1 shows the basic scheme for applying the 

split-time method for capsizing.  While the figure looks 

exactly the same as in Belenky, et al. (2013), the numeri-

cal scheme has been changed.  The “non-rare” problem 

has become purely statistical; simulations are run until 

sufficient statistics of upcrossing have been collected 

(consideration of how to set this intermediate level will 

be found in the second section of this paper).  The “rare” 

problem consists of a series of short simulations to find 

conditions leading to the event of interest at the instant of 

upcrossing.  In case of capsize, the minimal initial con-

ditions consist of roll angle and roll rate.  Since the roll 

angle is defined by the intermediate level, the roll rate 

leading to capsizing is the only unknown to be found. 

 
Figure 1: General Scheme of Split-time Method for Capsizing 

The roll rate leading to capsizing at the instant of 

upcrossing is identified as the “critical” roll rate, and is 

calculated for each upcrossing.  The difference between 

the observed and critical roll rate at the instant of 

upcrossing is the metric of danger; once this difference is 

zero, capsizing becomes inevitable. 

The primary focus of this paper is to study the dy-

namical properties of roll-rate difference as a “metric for 

likelihood of capsizing.”  We then attempt to formulate a 

corresponding metric for the problem of surf-riding.  

The statistical properties of the metric are outside the 

scope of this paper, and are presented in Belenky, et al. 

(2014). 

PURE LOSS OF STABILITY 

Dynamical Mechanism of Pure Loss of Stability 

The difference between ship stability in waves as 

compared to calm water has been known in Naval 

Architecture for well over a century (Pollard  & 

Dudebout, 1892).  However, practical calculation 

methods were not available until the 1960s (Paulling, 

1961).  A decade later, it was recognized as a separate 

mode of stability failure (Paulling, et al., 1975). 

The classic scenario of pure loss of stability 

involves a prolonged exposure to reduced stability on a 

wave crest, which results in a large roll angle or even 

capsize.  An obvious approach to examining this phen-

omenon was to consider the elements of stability as 

random quantities (Dunwoody, 1989a), which leads to 

the probability of a certain ship response (Dunwoody, 

1989b).  The development of advanced hydrodynamic 

codes have revealed a more complex picture of the 

phenomenon. 

The following results illustrate the mechanics of a 

large roll event in irregular seas.  The ship is the ONR 

Topside Series tumblehome configuration (Bishop, et 

al., 2005) and the condition is Sea State 8 (significant 

wave height 11.5 m, modal period 16.4 s) at zero speed 

in stern quartering long-crested seas.  Time-domain 

simulations are made using the Large Amplitude 

Motion Program (LAMP; cf. Lin & Yue, 1990).   The 

simulations use the LAMP-2 solver (nonlinear body-

wave formulation for Hydrostatic and Froude-Krylov 

forces, with radiation and diffraction forces evaluated 

over the mean wetted surface), three degrees-of-

freedom were allowed (heave, roll, pitch).  The 

simulations were performed for several random 

realizations of the seaway and the instantaneous GZ 

curve is computed at each time step of the simulations 

(Belenky, et al., 2010). 

A very large roll angle of 47.94 deg was recorded 

around 281 s of one of the simulations.  Figures 2–5 

present instantaneous GZ curves for the half of a 

response period containing the large roll angle.  Each 

of the figures is supplemented with a roll time history, 

containing this large roll angle.  The instantaneous ship 

position is marked with a square on the GZ curve 

figure and with a vertical line on the time history plot. 

The situation shown in Fig. 2 is fairly normal.  The 

ship has a moderately large roll to starboard (positive 

roll angle in this system) and the GZ curve, which is 

the stiffness of the dynamical system, goes through 

zero with positive slope, indicating the presence of a 

stable equilibrium near the upright position. 
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Figure 3 shows the instant when the roll angle 

reaches zero value.  The topology of the GZ curve is no 

longer normal; stable equilibrium around zero roll angle 

is absent. There is no stability on the port side; the 

stiffness is positive for negative roll angle.  It means the 

restoring moment will act opposite to normal:  instead of 

resisting further heeling, it pushes the ship over. 

 
Figure 2: Roll Time History (above) and Instantaneous GZ 
Curve (below); Initial Stage 

 
Figure 3: Roll Time History (above) and Instantaneous GZ 
Curve (below); Zero Roll Angle 

In Fig. 4, the roll angle increases rapidly, but after 

about 1.4 s, the near-zero equilibrium appears again.  

The stability to port has been partially regained, while 

the stability to starboard has disappeared completely.  

The ship is practically at equilibrium but this equilibrium 

is unstable.  The instantaneous GZ curve almost touches 

the axes near the zero on the positive side; it may be “the 

residue” from the positive peak of the GZ curve that was 

observed in Fig. 3.  There is still no stability further to 

port (to the left of the square showing instantaneous ship 

position on the GZ curve). 

Judging by the GZ curve shown in Fig. 4, the 

situation seems to be heading towards capsize.  As 

indicated in the time history, however, capsize does not 

occur and Fig. 5 shows why.  After about 5 s, stability 

to port has been restored; this resists further heeling 

and finally stops the roll at 47.94 degrees.  There is still 

no stability for roll to starboard, but it does not matter 

at this point as the ship is heeled to port. 

 
Figure 4: Roll Time History (above) and Instantaneous GZ 
Curve (below); Zero Stiffness 

 
Figure 5: Roll Time History (above) and Instantaneous GZ 
Curve (below); Amplitude Roll Angle 

The duration of negative stability to port was about 

3.6 s (from 274 s in Fig. 2 until 277.6 s in Fig. 4), and 

this exposure was sufficient to cause a very large roll 

angle.  The persistence of exposure to reduced or 

negative stability seems to be insufficient to completely 

allow the phenomenon of pure loss of stability to 

occur; the timing or phase of the stability reduction is 

also very important. 

The drastic changes in the GZ curve topology 

leave very little chance of effectively modeling it by 

“modulating” the calm-water GZ curve with random 

GM value.  The characterization of the equilibria is at 

least as important as the randomness of the GM value.  

Of course, the mechanism of the described event is 

not the only one that may produce a larger roll, but it is 
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clear that pure loss of stability is a complex dynamical 

phenomenon. 

Stability of a Ship and Stability of Motions 

The computation of the instantaneous GZ curve, as 

described in the previous subsection, has left very little 

hope of developing a simple model of GZ curve changes 

in waves.  The direct computation of the GZ in waves is 

possible, but is computationally expensive to perform at 

every step of long simulations.  This led to the idea of 

searching for capsizing conditions (critical roll rates) 

only at the instants of upcrossing of some intermediate 

level of roll angle. 

The algorithm of this search is illustrated in Fig. 6.  

The roll rate at the upcrossing is perturbed by a small 

amount, and a new simulation is run from the point of 

upcrossing.  The initial roll angle equals the intermediate 

(threshold) level, while the initial roll rate equals the 

perturbed roll rate.  Heave and pitch are currently taken 

from the unperturbed simulation, but full free motion 

could be considered in the future. 

The value of the roll rate perturbation is increased 

until the simulation shows capsizing.  Then the critical 

roll rate can be computed (with a given tolerance) by 

iteration, handling the problem in a manner similar to the 

numerical solution of a set of algebraic equations. 

 
Figure 6: Calculation of the Critical Roll Rate 

 

This algorithm may be interpreted as a definition of 

stability.  Euler (1749) defined a stable ship as “being 

inclined by external forces returning back to its original 

position, once the forces ceased to exist”.  The 

perturbation of the roll rate can be considered as a 

dynamic application of a force.  Indeed, if a force is 

applied for a short time, the result of such application is 

change in momentum, i.e. change in roll rate.  Thus, this 

roll rate perturbation is the “Euler’s force” that was 

applied and then “ceased to exist” in order to determine 

ship’s stability.  The critical roll rate can therefore be 

considered as a metric of the stability range from the 

point of view of this classical definition of ship stability. 

As shown in Fig. 6, the perturbed time history con-

verges with the unperturbed motions if capsize does not 

occur,.  This allows the capsizing definition to be 

interpreted from the standpoint of general motion sta-

bility.  The response of a dynamical system is defined 

as (asymptotically) stable if, after a perturbation, the 

perturbed response tends to the unperturbed response.  

Thus, capsizing, as determined by a critical roll rate, 

may be seen as “an instability” in roll motion.  Then, 

the critical roll rate is used as a metric of motion 

stability, as it includes the magnitude of perturbation 

leading to “an instability” at a particular instant of 

time. 

This discussion has established equivalency 

between the proposed algorithm for critical roll rate 

and accepted definitions of stability of a ship and 

general motions stability.  Moreover, one can demon-

strate that the classical definition of ship stability in 

calm water is equivalent to general motion stability 

definition through the critical roll.  This method of 

solution of “rare problem”—by searching a critical 

value for perturbation—is subsequently referred to as 

the Motion Perturbation Method, or MPM. 

The Intermediate Level 

One important question remains: what is the intermedi-

ate level and how can it be determined? The meaning 

of the intermediate level has changed with the 

evolution of the split-time method.  The initial version 

of the method (Belenky, et al., 2008, 2010, 2013) 

interpreted the intermediate level as the boundary 

between two different domains with different physics, 

such as attractor and repeller, increasing and decreas-

ing parts of the GZ curve.  That led to requiring a very 

specific location for the intermediate level.  As a result, 

there was a need to track the GZ curve in waves and to 

theoretically evaluate the upcrossing rate, as there was 

no guarantee that enough statistical data would be 

available. 

The MPM-based approach does not have any 

particular requirement for the location of the 

intermediate level from the physical standpoint.  The 

role of the intermediate level is different here; it 

provides the relationship between probability and time. 

Many authors have used Poisson flow as a model for 

capsizing in irregular seas, so the probability of 

capsizing after time T is: 

                             1 exp( )P T T                         (1) 

Here  is a rate of capsizing.  Following the logic of 

Belenky, et al. (2008), capsizing occurs at an upcross-

ing, where the observed roll rate at upcrossing exceeds 

the critical roll rate: 

                        






cr

UUU dpdf


 )(                   (2) 

Where U
  is the roll rate at the instant of upcrossing, 

cr  is the critical roll rate found with MPM, pdf stands 

for probability density function, and U is the rate of 

the upcrossing of the intermediate level. 
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As noted above, the intermediate level is now 

chosen in such a way that a statistically significant 

number of upcrossing events can be observed.  The value 

of the upcrossing rate can therefore be estimated directly 

from observations: 

 
T

NU̂  (3) 

Where ̂  is an estimate of the upcrossing rate through 

the intermediate level, NU is the number of observed 

upcrossings, and T is the total time of observation but not 

the same T as in (1). 

If the intermediate level is chosen high enough that 

the upcrossings can be considered independent, the 

confidence interval of the estimate (3) can be evaluated 

using the normal distribution (Belenky, et al., 2008).  

However, the current (MPM) version of the split time 

method does not require Poisson flow for the 

intermediate level.  Yet there are other considerations. 

To avoid additional complexities, it is better to keep 

random values of critical roll rate independent.  The situ-

ation shown in Fig. 7a suggests that the two values of 

critical roll rate will be independent, because the second 

upcrossing occurred after the perturbed solution has con-

verged to the unperturbed solution.  Thus, whatever hap-

pens at the first upcrossing has no influence on the next 

upcrossing. 

 
 

Figure 7: Independent (a) and Dependent (b) Upcrossing 

Events from the Point of View of the Critical Roll Rate 

The situation shown in Fig. 7b is different.  The 

second upcrossing is located within the time of conver-

gence.  As a result, the critical roll rates evaluated for 

these two upcrossing events may be dependent.  This is 

important, as the construction of pdf in  (2) will require 

independent data (Belenky, et al., 2014). 

The appearance of dependent upcrossings does not 

disqualify the selected intermediate level.  It is simply 

necessary to use only one of each set of dependent up-

crossing events for calculations requiring independent 

data.  Note that the check of the independence of the 

results of sequential critical roll rate calculations 

imposes no additional burden, as the convergence time 

is available from the MPM analysis. 

However, if the intermediate level is too low, there 

will be many dependent critical roll rate calculations 

and many of the data points will be disqualified; this 

means that some computations will be wasted.  On the 

other hand, if the intermediate level is too high, there 

will be very few upcrossing observations, and one will 

need to run the code for a long time to collect a sample 

of sufficient size. 

SURF-RIDING 

Celerity of Irregular Waves 

Ιn regular (periodic) waves, surf-riding occurs when a 

ship’s instantaneous surge velocity reaches wave celer-

ity.  One wonders, however, whether this simple phe-

nomenological condition could be extended to an irreg-

ular wave environment.  An issue that arises is how 

wave celerity should be calculated for a polychromatic 

sea.  Recently, the concept of instantaneous celerity 

was introduced, built upon the velocity of the 

propagation of a suitable local property of the wave 

profile (Spyrou, et al., 2012, 2014).  In parallel, a 

variant definition (but still under the same principle) 

referring to local celerity was proposed, based on the 

propagation in time-space of the point of maximum 

wave slope located in the vicinity of the ship, as an 

approximate and observable representative of the 

position of maximum surge wave force nearest to the 

ship.  These celerity functions can sometimes show an 

intensely fluctuating character and may jump to infinity 

(the result for example of a process of generation and 

annihilation of wave crests) especially for broader 

spectral bandwidths.  Such a feature is undesirable as it 

must be continually checked against the ship surge 

velocity.  We have thus introduced an alternative meth-

od for calculating the instantaneous celerity that is 

based on the concept of instantaneous frequency from 

signal processing (Spyrou & Themelis, 2013).  The in-

stantaneous frequency is defined as the derivative of 

the phase of the so-called “analytic signal.” 

In polar coordinates, an “analytic signal” Z(t) 

composed of N components can be expressed as: 

                         
1

exp
N

i i

i

Z t A t j t


                 (4) 



 

where Ai(t) and i(t) are the instantaneous amplitude and 

time-dependent phase of the ith component, respectively: 
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In  (5),  are the real signal and its Hilbert 

transform, respectively (Feldman, 2011).  According to 

Nho & Loughlin (1999), the instantaneous frequency, in 

time, for this N-component analytic signal will be: 
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where the dot over a function represents the  derivative 

(partial derivative) of that function with respect to time, 

and .ik i k     

The procedure for calculating the instantaneous 

celerity at a point entails the localised frequencies in time 

and in space. We assume that the wave profile is 

represented, as customarily, by a Fourier series: 

    
1

, cos ,
N

i i

i

x t A x t 


           (7) 

The phase of each harmonic component would be 

 ,i ix t k x   i it  , where ki, i, and i stand for the 

wave number, the frequency, and the random phase of 

each harmonic component, respectively.  Then, with time 

marching we specify the locus of points  ,x t  where the 

instantaneous celerity will be calculated (an example 

appears in Fig. 8).  At a point    , ,
s s

x t x t , the 

localized frequencies are calculated by the partial 

derivatives of phase in time and in space, implying that 

we freeze, successively, the space and time variable at sx

and st in each case: 

            
 

 
 s s

s s

, ,
, ,   ,

x t x t
x t k x t

t x

 


 
  

 
      (8) 

The partial derivatives are calculated in a manner similar 

to (6) (the minus sign in the above expression for   is 

due to the minus in front of the individual frequencies in 

the expression for the phase of each harmonic compo-

nent).  The instantaneous celerity at a point in time-space 

is then directly derived by the following expression: 

  
 

 
s s

s s

s s

,
,

,

x t
c x t

k x t


  (9) 

Comparisons of wave celerity calculations according to 

Spyrou, et al., (2012, 2014) and the current scheme are 

presented below. 

Comparison 1: Effect of band-width 

A JONSWAP spectrum with significant wave height

S 5 mH   and peak period P 12 sT   was used to produce 

wave realizations with different frequency ranges 

around the peak (Table 1).  Fig. 8 shows contours of the 

points of zero wave slope—in the xt-plane—for the 

scenario No. 4. 

Table 1: Discretization of spectrum and range of frequencies 

scenario 

% peak   

(one side) 

start  

(rad/s) 

end  

(rad/s) 

Ν of 

freq. 

Spectrum 

band-width 

1 2.5 0.511 0.537 3 0.014 

2 5 0.497 0.550 5 0.029 

3 10 0.471 0.576 9 0.057 

4 20 0.419 0.628 17 0.108 

Fig. 9 compares typical instantaneous celerity 

curves obtained by the two calculation schemes.  The 

curves follow each other very well, with some small 

differences noted for the most wide band scenario.  The 

celerity corresponding to the weighted mean frequency 

is also plotted, it appears to behave like a mean celerity 

function. 

 
Figure 8: Contours of points of zero slope in wave field (thin 

lines) and the locus of points where celerity is calculated 

corresponding to a crest (thick line).  The realizations 

correspond to 4th scenario of Table 1. 

Comparison 2: Celerity at ship’s position 

Ship motion was also involved in the second compari-

son.  Three band-width scenarios were considered (see 

Table 2), each derived from a JONSWAP spectrum 

with S
6 mH   and P

9.5 s.T    The ship’s nominal 

speed was 12 m/s.  Comparisons of surge velocity 

against celerity are shown in Fig. 10.  The smoother 

character of the lines obtained by the new celerity 

calculation scheme is evident, indicating that it would 

be preferred for the practical implementations of a 

celerity-based criterion.  Surge velocity appears to 

fluctuate around celerity once surf-riding is established. 

Phase Space Topology in Irregular Waves 

When addressing the problem of surf-riding in 

irregular seas, the explicit time dependence of the 

excitation means that the conventional dynamical 



 

systems toolkit do not provide much help in unraveling 

the qualitative features of the behavior of the system. 

 

Figure 9: Instantaneous celerity for different wave scenarios 

(2.5, 5, 10 and 20% of peak period, respectively).  Dashed lines 

correspond to Spyrou, et al., (2012, 2014) while the continuous 

thick lines are based on the new scheme.  The horizontal gray 

lines stand for the celerity corresponding to the weighted mean 

wave frequency. 

 

 
 

Figure 10:  Comparison of instantaneous celerity calculations 

for different band-widths (5, 10 and 20% of peak period, 

respectively).  Black points refer to the new scheme while the 

blue to Spyrou, et al., (2012, 2014).  The grey curve indicates 

the ship’s surge velocity and the horizontal dashed line is the 

nominal speed. 

It is, however, possible to describe the evolution of 

the system using a frame of reference that is attached to 

some key feature of the system itself, where a feature 

might be any object or structure that is relevant to the 

problem. In such a case, one has to define the 

properties of this feature, which is not trivial at all. 

Table 2: Data for the “narrow-band” wave realizations 

scenario 

% peak 

(one side) 

start  

(rad/s) 

end  

(rad/s) 

Ν of 

freq. 

Spectrum 

band-width 

1 5 0.628 0.694 4 0.029 

2 10 0.595 0.728 7 0.051 

3 20 0.529 0.793 13 0.087 

The possibility of extracting and tracking features 

related to the nonlinear surge equation of motion in 

irregular seas is examined next.  The study is based on 

the concept of Feature Flow Field (Theisel & Seidel, 

2003), which addresses the problem of feature tracking 

in non-stationary flow fields.  The Feature Flow Field 

(FFF) method is proposed for the tracking of a variety 

of different local features, including critical points of 

vector fields.  Given a vector valued function of the 

form: 

                        
 

 
1

2

, ,
, ,

, ,

v x  y  t
v x  y  t

v x  y  t

 
  
 

                (10) 

a 3-dimensional vector field V(x, y, t) is constructed, by 

demanding that V points toward the direction of 

minimal change of v in a first order approximation.  

This direction is given by the intersection of the planes 

perpendicular to 1v  and 2v , where the   operator 

is related to the three-dimensional Euclidian space with 

coordinates  , ,x y t . Thus: 

                             1 2,  ,  V x y t v v                     (11) 

The path of some critical point of v  may be seen as a 

streamline of V, integrated from the point under 

consideration. 

In the case of surf-riding, we usually consider the 

following system (Spyrou, 2006): 

 
     

1 2

2 2 2 1 ,

x x

x T x R x F x  t



  
        (12) 

where 1x  and 2x  are the distance from the origin and 

the velocity of the ship in the surge direction, 

respectively, while  
2

T x ,  
2

R x  and  
1
,F x t  are 

the propulsive thrust, ship resistance and surge wave 

force (all divided by the sum of the mass of the ship 

and the surge added mass), respectively.  It is assumed 

that (12) is expressed with respect to an earth-fixed 

coordinate system.  The FFF will be given by: 

  1 2 1 2,  ,  V x x t x x                      (13) 

An interesting result is observed when we relate 

the   operator to translating frames of reference, 

which follow the paths of the phase particles of (12).  



 

Consider for instance (12) with harmonic excitation.  The 

corresponding FFF will be: 

                   
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  
 
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                  (14) 

We slice the time-extended phase space perpendicular to 

the t-axis and visualize the integral lines of the vector 

field: 

  
 

 
1 1 2

1 2

2 1 2

,  ;  
,  ;  

,  ;  
S

V x x t const
V x x t const

V x x t const

 
   

 
 (15) 

Then, structures that locally bear strong resemblance to 

the trajectories around the pair of equilibria (arising as 

stationary solutions of (12)) can be observed in Fig. 11.  

In Fig. 11 the integral lines and the magnitude of SV  are 

shown for the harmonic case.  Horizontal lines corre-

spond to wave celerity, while white circles correspond to 

surf-riding equilibria.  These structures occur in connec-

tion to certain critical points of (15).  It should be noted 

that the positioning of equilibria agrees with that of the 

critical points (however, extra critical points of (15) can 

be found, not relating to equilibrium solutions).   

Consider now an analysis of (12) similar to that of 

the previous paragraph and of Fig. 11, but this time using 

a JONSWAP wave spectrum (Fig. 12).  The “saddle and 

focus-like” structures are still present.  However, these 

were not observed for all times (when considering the 

observation window to be of finite size on the phase 

plane).  In Fig. 13 are shown instants of an animated 

simulation.  Streamlines of SV  are visualized in the right 

part; white circles denote the state of the ship.  In many 

cases the latter appears engaged in a chase with a critical 

point, appearing as the core of the focus-like structure.  

Its pair, on the other hand, seems to have a role similar to 

that of the unstable equilibrium related with surf-riding 

in harmonic waves: if the ship is “close enough,” it 

accelerates on the downslope of a wave where it engages 

in a chase of the critical points of (12) mentioned before. 

By further consideration of (14) we obtain for the 

components of V: 

             
   1 1

1 2 2

1

,  ,  
,

dF x t F x t
V V x

dt x


 


         (16) 

where dF(x1, t)/dt  is the rate of change of F(x1, t) along 

the trajectories, i.e. the change of the surge wave force as 

it would be measured by an on-board device.  Critical 

points of (15) appearing as cores of the structures that 

can be seen in Figs. 11, 12, and 13 are found to satisfy 

the system of equations: 
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0

0
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2

1

x

dt

txdF


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Figure 11: Integral lines and magnitude of SV  for the 
harmonic case. 
 

 

 

Figure 12: Streamlines and magnitude of SV for the case of a 

JONSWAP spectrum. 



 

 

 
Figure 13: Two instants of an animated simulation for the case of a JONSWAP spectrum ( 6SH  m , 9.5PT  s , frequency 
range of 20% P   and nominal speed set at 12 m/s ).  On the lower left part, one can observe the time history of surge velocity 
vs. that of instantaneous celerity calculated at the ship’s position (9).  The red dashed line denotes the nominal speed. 

 

which is in fact equivalent to the set of equations: 

 

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





0

0

2

2

x

x


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 (18) 

The latter implies that these are points at which both 

acceleration and its time derivative attain, instantly, zero 

values (unfortunately the identified surf-riding states are 

not the only points satisfying (17) or (18)). 

If the velocity  varies slowly along the path  of a 

focus-like critical point, it appears that, the smaller the 

rate of change, the more  will be related to a solution.  

In the extended phase space of (12),  could be regarded 

as a core line of a “tube” formed by nearby swirling 

trajectories.  In the harmonic case, this core line is a 

straight line forming an angle  with the 
1 2

x x -plane (and 

parallel to the 
1

x t -plane).  Furthermore, cot = c where 

c denotes the wave celerity. 

Possible MPM Metric of Surf-Riding Likelihood 

As has been demonstrated in the previous subsection, the 

introduction of the irregular waves makes the dynamical 

system time-dependent.  Numerical characterization of 

the invariant manifold, while possible as described above 

(see also Vishnubholta, et al., 2000), is difficult, has 

some computational uncertainties, and is time 

consuming.  What would be a good candidate for the 

metric of surf-riding likelihood? One possibility is the 

distance to the invariant manifold as shown in Fig. 14. 

The invariant manifold is not known and is not 

expected to be known for the calculation of the metric.  

However, it is possible to know the position of the 

 

     
Figure 14:  Definition of Possible Candidate for a Metric of 

Likelihood of Surf-Riding 

 

surf-riding stable quasi-equilibrium.  The distance can 

be measured along the line between the initial position 

of a ship and position of the stable quasi-equilibrium at 

the initial instant.  The calculation scheme can be 

similar to the case of pure loss of stability. 

To demonstrate that these calculations are viable, 

consider the surging/surf-riding phase plane with 
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slowly changing wave characteristics as shown in 

Fig. 15. 

 
Figure 15: Slowly Changing Parameters of Wave 

 

The changes of the wave parameters shown in 

Fig. 15 lead to changes in the wave celerity and the 

positions of the equilibria, as shown in Fig. 16.  The 

equilibria cease to exist around 280 s and surf-riding 

becomes impossible after that time. 

 

   
Figure 16: Changes in Positions of the Surf-riding Quasi-

Equilibria 

 

The results of iterative perturbations are shown in 

Fig. 17.  One should note that despite its axis of wave 

position/instantaneous forward speed, the curves shown 

there are not phase trajectories.  The topology of phase 

plane is changing; it would be more correct to think of 

Fig 17 as a projection of 3D curves, where the third 

dimension is time.  Nevertheless, the perturbations do 

work the same way as the case of pure loss of stability.  

The critical point, indeed, belongs to the invariant mani-

fold at the initial instant of time. 

CONCLUSIONS AND FUTURE WORK 

Several dynamical aspects related to the application of 

the split-time method to pure loss of stability and to surf-

riding have been presented. 

Some pure loss of stability occurrences may be re-

lated to duration and phasing of stability deterioration.  A 

critical roll rate at the instant of upcrossing at an in-

termediate level was defined as the minimum roll rate 

that would lead to capsizing and can be evaluated 

through an iterative application of perturbations called 

the Motion Perturbation Method (MPM).  Through the 

MPM method, it was demonstrated that ship stability in 

waves is a particular case of motion stability of a dy-

namical system. 

 
Figure 17: Calculation of Critical Distance in Phase Plane 

 

The difference between the instantaneous and criti-

cal roll rate can be used as a MPM metric for the likeli-

hood of capsizing due to pure loss of stability as it in-

cludes the changes of stability in waves without any as-

sumptions.  The choice of the intermediate level is 

mostly a computational issue, as only independent 

MPM metrics can be used for further calculations. 

A key issue for surf-riding in irregular waves is the 

definition of wave celerity.  The positions of quasi-

equilibria depend on celerity, so the celerity affects the 

phase-plane arrangement.  A new method for calculat-

ing wave celerity is proposed, based on the concept of 

instantaneous frequency.  It provides a smoother celer-

ity curve in comparison with the definition based on 

the speed of propagation of characteristic features 

(such as the maximum wave slope angle). 

The irregularity of the waves renders the phase 

plane time-dependent.  Conventional analysis based on 

stationary phase flows cannot help in this case.  Meth-

ods from fluid mechanics applied to time-dependent 

real flows can also help for phase flows.  We have in-

troduced the “Feature Flow Field” method for tracking 

different local features of the phase flow, which play 

an organizing role for the phase flow in their vicinity. 

The straight-line distance, in the phase plane, be-

tween the state of a ship and the position of stable surf-

riding quasi-equilibrium at that instant may be consid-

ered as a candidate MPM metric of the likelihood of 

surf-riding in irregular waves. 
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