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ABSTRACT  

Consideration of a steep multi-chromatic wave field greatly increases the complexity of ship 

surge dynamics as it renders the underlying strongly nonlinear system also time-dependent. Conse-

quently, conventional concepts used for the analysis of stationary phase-space flows are no longer 

sufficient to support an in-depth investigation of ship dynamics. To overcome this hindrance, the 

concept of hyperbolic Lagrangian Coherent Structures (LCSs) is employed. These phase-space ob-

jects can be regarded as finite-time generalizations of the stable and unstable manifolds of hyperbol-

ic trajectories defined in dynamical systems with special (such as periodic or quasiperiodic) time 

dependencies. LCSs represent, locally, the strongest repelling or attracting material surfaces (curves 

in the case of 2-dimensional systems) advected with the phase flow. We identify hyperbolic LCSs 

that are intrinsic to the phase flow associated with the surge motion of a ship in astern seas. To the 

global approach of LCSs is incorporated a scheme aiming to track in space-time “local features” of 

the flow. The emerging new toolset can enhance substantially current efforts towards a rigorous as-

sessment of ship dynamic stability in steep following seas. 
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1. INTRODUCTION 

The mechanisms generating surf-riding for 

a ship in regular seas have been extensively 

studied in the past (Kan 1990; Spyrou 1996). 

However, gaining understanding beyond       

the context of harmonic waves has been con-

sidered as a daunting task, till recently. The 

consideration of a multi-frequency wave field 

brings in new concepts accruing from the time-

dependent nature of the problem. 

For the regular sea scenario, it is well 

known that surf-riding can be identified as an 

equilibrium solution of the surge equation of 

motion. The consideration, though, of more 

general wave forms introduces profound com-

plications. For an irregular seaway, this key 

definition needs to be revised, since stationary 

states are not likely to exist; i.e., one cannot 

assume that the underlying non-autonomous 

dynamical system will admit constant solu-

tions. Therefore, a broader definition of surf-

riding needs to be sought. 

These difficulties have been recognized and 

a phenomenological approach to surf-riding in 

irregular seas has been proposed, expanding 

upon the notion of wave celerity and its role   

in signaling the capture to surf-riding (Spyrou 

et al. 2012, 2014a). In particular, definition  

and methods for the calculation of wave celeri-

ty for an irregular seaway were proposed and 

their relevance to the problem of surf-riding 
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was examined. The appeal of such an approach 

is that it can permit the evaluation of the prob-

ability of surf-riding in irregular seas, by set-

ting up the latter as a threshold exceedance 

problem. 

Through the identification of “surf-riding 

equilibria”, i.e. points on the wave where      

the equilibrium of forces in the longitudinal        

direction of the ship is instantaneously satis-

fied, Belenky et al. (2012) endeavoured to   

gain insight into the dynamics of surge      

equation in multi-frequency following waves. 

It is noted that for the calculation of such    

points, celerity of irregular waves needs to be 

evaluated. 

In another study, Spyrou et al. (2014b) ex-

amined the possibility of extracting and track-

ing “features” related to the surge dynamics in 

irregular seas (the term is used to characterize 

objects that are relevant to the problem consid-

ered). It was concluded that meaningful fea-

tures are found among the elements of the zero 

set of the “acceleration field” i.e., points on the 

phase space where the acceleration and its time 

derivative attain, instantly, zero values. Moreo-

ver, it was conjectured that certain points satis-

fying such a condition correlate with surf-

riding events. 

In the current work, new methods with po-

tential to yield further insights into the dynam-

ics of the surge motion in multi-chromatic 

astern seas are applied. In particular, the con-

cept of hyperbolic Lagrangian Coherent Struc-

tures (LCSs) is tested for unveiling the chang-

ing-in-time organization of system’s phase-

space. Through their organizing role, these 

structures can be considered as analogues of 

the stable and unstable manifolds of hyper-

bolic fixed points, defined in autonomous    

dynamical systems. For their identification   

different methods can be applied. Here, a   

popular, in the nonlinear dynamics literature, 

numerical scheme is applied, based on the   

calculation of the spatial distribution of the 

largest finite-time Lyapunov Exponent of sys-

tem’s trajectories. 

2. LAGRANGIAN COHERENT 

STRUCTURES 

2.1 General 

The concept of Lagrangian Coherent Struc-

tures seems to have emerged as result of the 

interbreeding of ideas originating from the 

fields of dynamical systems theory and fluid 

dynamics. Although the term was first intro-

duced by Haller & Yuan (2000) many people 

have contributed in the development of compu-

tational strategies – for a short review see 

Shadden (2011). In the context of fluid flows, 

LCSs can be physically observed as the cores 

of emergent trajectory patterns and are identi-

fied as, locally, the strongest attracting/repel-

ling material surfaces advected with the flow. 

LCSs have been extensively used during the 

last years in a wide range of applications con-

cerning physical and biological flows, while 

the theory, as well as efficient calculation 

methods, are still developing. 

2.2 Identification of LCSs 

Although one can choose among different 

identification schemes (such as the finite size 

Lyapunov Exponent (FSLE) approach, or the 

variational theory of hyperbolic LCSs devel-

oped recently by Haller (2011) that enables a 

more rigorous computation) for the needs of 

the current study we will consider a widely 

used computational procedure, which involves 

the calculation of the largest finite-time Lya-

punov Exponent (FTLE) field. 

Let us consider the following dynamical 

system that defines a flow on the plane, 

  2, ,        ,    ,x f x t x D t t t         (1) 

A trajectory of system (1) at time t , starting 

from the initial condition 
0x  at 

0t , will be de-

noted by  0 0; ,x t t x . We can write for the flow 

map  
0 0

t

tF x  of (1), 
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 
0

0 0 0

:    

          ; ,

t

tF D D

x x t t x


   (2) 

Through (2), the phase-particle passing 

from 0x at time 
0t , is associated with its posi-

tion  0 0; ,x t t x  at time t . We, furthermore, 

consider two infinitesimally close phase-

particles, located at 
0x  and 0 0x  at time 

0t . 

The magnitude of the linearized perturbation at 

time t is given by, 

 

   

 

       

0

0 0

0 0

0 0 0 0 0
ˆ ˆ         

t

t t

T
T t t

t t

F x

F x F x

 

  

  

    

  (3) 

In the above 0̂  is the unit vector along the 

direction of 
0 , 

TA  denotes the transpose of 

A , while  
0 0

t

tF x  is the deformation gradient 

and      
0 0 00 0 0

T
t t t

t t tC x F x F x      the right 

Cauchy-Green deformation tensor, both evalu-

ated at 
0x .  

0 0

t

tC x is a real symmetric, positive 

definite tensor and as such has real positive ei-

genvalues, 

1 20       (4) 

Moreover, the corresponding eigenvectors 

ie , 1,2i   form an orthonormal basis. The 

Cauchy-Green deformation tensor provides a 

measure of how line elements in the neigh-

bourhood of 
0x  deform under the flow i.e., 

how the lengths and the angles between line 

elements change, when considering the config-

uration in the close vicinity of  0 0; ,x t t x  at 

times 
0t  and t . A circular blob of initial condi-

tions centred at 
0x  will evolve into an ellipse, 

with the major (minor) axis aligned with the 

direction of the eigenvector 
2e  (

1e ). The coef-

ficients of expansion along these directions will 

be given by i , 1,2i  . 

The finite-time Lyapunov exponents 

(FTLEs) are defined as follows, 

0

1
ln ,        1,2i i i

t t
  


  (5) 

The largest FTLE, 
2 , is usually referred to 

as “FTLE” without distinction. By virtue of (5) 

2  can be regarded as a time-averaged meas-

ure of stretching and therefore, as a (rough) 

measure of a trajectory’s hyperbolicity. Yet, as 

noted by Shadden (2011) and Haller (2011), 

this does not hold in general.  

Through the calculation of the spatial FTLE 

distribution, the identification of LCSs can be 

made possible. The latter will appear as local 

maximizing curves of the FTLE field. Typical-

ly, the calculation of the field is performed on 

the basis of a structured grid of initial condi-

tions spanning a considered domain at a given 

time 
0t . The grid is integrated over a specified 

time interval, 
0t t   , using a numerical inte-

gration algorithm. Once the final position of 

each grid point is calculated, the deformation 

gradient is obtained by implementing a finite 

difference scheme on the nodes of the initial 

grid. In the final step of the procedure, the larg-

est eigenvalue of the deformation gradient is 

computed and the FTLE field is calculated di-

rectly from expression (5). The location of re-

pelling/attracting LCSs can be identified as 

ridges of the FTLE field when forward/back-

ward integration times are considered – con-

traction can be viewed as expansion in reverse 

time. 

3. MATHEMATICAL MODEL OF 

SURGE MOTION 

Consider the following unidirectional 

waveform comprised of N propagating, har-

monic wave components, 

    

( )

1

; cos
N

r

i i i i

i

x t A k x t  


       (6) 
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In the above, x  is the distance from an 

earth-fixed point of reference, while 
iA , 

ik  and  

i  are the amplitude, wave number and fre-

quency, respectively, of the distinct wave com-

ponent i ; ( )r

i  denotes the random phase of the 

latter, uniformly distributed in the range 

 0,2 . 

We, furthermore, consider an elementary 

mathematical model that can reproduce asym-

metric surging and surf-riding occurrences in 

following waves of the form (6) – Spyrou et. 

al. (2012, 2014a), 

 

 

 

    

   

   

2 2

0 1 2

2 3

1 2 3

( )

1

 

     

     

     sin

u

inertia

thrust

resistance

N
r

i i i i i fi

i

wave force

m X

n n

r r r

A RAO k t



    

  

   


 

  

   

     

  (7) 

In the equation above,   is the position of a 

ship-fixed point of reference with respect to the 

earth-fixed origin, while 
iRAO  and fi  denote 

the response-amplitude-operator and phase, 

respectively, of the surging force correspond-

ing to the wave component i ; n  corresponds to 

the propeller revolutions. The overdot denotes 

differentiation with respect to time t . Setting, 

1 2 ,    x x      (8) 

equation (7) can be written in normal form, 

  

  

1 2

2

2 0

( )

1

1

          + sin
N

r

i i i i fi

i

x x

x n

f k x t



  




 

     

  (9) 

         

2 3

1 1 2 2 2 2 3 2 ur n x r x r x m X         

where in the above  i i if A RAO . 

4. APPLICATION 

We select, as a case study, the tumblehome 

hull from the ONR topside series with 

154 L m , 18.8 B m  and 5.5 T m . To test 

the applicability of the method in the problem 

considered, we first write system (9) for 1N   

(regular waves), 

 

   

 

  

   

1 2

1

2

2 3

1 1 2 2 2 2 3 2

2

1 0 

        

               sin

u

x x

x m X

n r x r x r x

f k x t n

 

  





 

     


   


  (10) 

We set the wave length and steepness    

values to L   and / 0.04H   , respectively, 

where H  the wave height. Deep water is as-

sumed. For the calculation of the FTLE field,   

a grid is considered at 
0 300 t s  on a (

1x ,
2x ) 

domain. Integration time is set to 45 s  .  

The graph of the resulting field can be         

seen on the left part of figure 1. On the       

right part of the same figure, we visualize loci 

of points where the field surpasses a select-    

ed threshold of   20.85Max  . The emergent 

curves correspond to repelling LCSs over the 

interval  0 0,t t  . 

To further examine the relevance of these 

structures with the stable and unstable mani-

folds of hyperbolic fixed points arising in the 

context of surf-riding in regular waves, we ren-

der (10) in autonomous form by considering 

the following transformations, 

,1 1 2 2 ,     w wx x ct x x c      (11) 
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Figure 1   Harmonic excitation: The graph of the forward FTLE field over a (
1x ,

2x ) domain (left, 

middle). Loci of points where the field surpasses a selected threshold (right). 

 

In the above, 1

wx  and 2

wx  is the longitudinal 

position and velocity, respectively, of the ship 

with respect to a frame located at a wave crest, 

translating with the wave celerity c . 

Applying expressions (11) to system (10) 

we obtain, after rearranging, the following set 

of equations, 

 

 

    

   

  

 

 

1 2

1

2

2

1 1 2 2 3 2

2 3

2 2 3 2 3 2

1

        2 3

            + 3

                     sin ,

w w

w

u

w

w w

w

x x

x m X

n r c r r c x

r r c x r x

f k x g c n

 









 


       



   


   



 (12) 

where, 

 

   

2

0

2 3

1 1 2 2 3

,

               +

g c n n

n r c r c r c



 

 

   
  (13) 

It can be seen that system (12) does not de-

pend (explicitly) on time. Stationary solutions 

can be obtained by setting the right hand side 

to be equal to zero and solving with respect to 

1

wx  and 2

wx . In the upper part of figure 2, a 

number of saddle points are identified and the 

unstable/stable manifolds are “grown” by inte-

grating perturbed, with respect to the fixed 

points and along the eigendirections, initial 

conditions forward and backward in time. 

Wave length and nominal speed are set to 

L   and 12.5 nomu m s . The figure on the 

left (right) correspond to a wave steepness of 

0.015s    0.04s  .  

We, consequently, consider system (10) and 

calculate, for the same settings, the forward 

( 420 s  ) and backward ( 240 s   ) FTLE 

field at 
0 0 t s . LCSs are identified as in the 

case of figure 1. Results are presented in the 

lower part of figure 2; grey (black) lines      

correspond to repelling (attracting) LCSs. We 

note that the arrangement of the structures re-

vealed is, substantially, identical to the ar-

rangement of manifolds integrated from the 

saddle points. The only difference is that the 

former are translating with the wave celerity – 

as system (10) is expressed with respect to an 

earth-fixed frame. 

We now introduce a second wave compo-

nent i.e., system (9) is considered with 2N  . 

The length and steepness of the reference wave 

are set to 
1 L   and 

1 0.04s  . The parameters 

of the second wave component are fixed such 

that 
2 1 0.91    and 

2 1 0.4s s  . Nominal 

speed is set to 12 nomu m s . FTLE fields are 

calculated at 258 s  and 282 s  (figure 3). As it 

can be noticed, LCSs seem to persist while 

their arrangement resembles, in a sense, to that 

observed in the regular case. This time though, 

the image is somehow “distorted” – as ex-
pected. 
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Figure 2   Top: Manifolds of hyperbolic points 

of (12). Bottom: LCSs of (10) obtained from 

forward (grey) and backward (black) FTLE 

fields. 

   

Figure 3   Bi-chromatic excitation: Attracting 

(black) and repelling (grey) LCSs. 

The same procedure is repeated for the  

case of a JONSWAP spectrum with a peak   

period and significant height of 10 pT s  and 

5.5 sH m , respectively. A frequency range of 

 0.5 p  is considered around the peak value p  

and a 51-component wave is produced. Nomi-

nal speed is set to 12 nomu m s . Results are 

displayed in figure 4. As it can be seen, the ar-

rangement of the identified structures appears 

to be fairly complicated. 

Returning to the bi-chromatic scenario, we 

attempt, this time, to ascertain the organizing  

role of LCSs on the time-varying phase-flow. 

We set L  , 
1 0.025s  , 

2 1 0.76   , 

2 1 0.4s s   and 12 nomu m s . In figure 5 a 

parcel of particles is integrated – these corre-

spond to different initial conditions for the 

ship. The evolution of the parcel under the flow 

reveals different “long-term” behaviour of par-

ticle trajectories, as the former, after some 

time, splits in two. Some particles seem to re-

spond in a surging-like manner (figure 5, parti-

cles on the left part of the last snapshot), while 

others seem to be engaged to surf-riding (same 

snapshot, right part). 

   

Figure 4   Attracting (black) and repelling 

(grey) LCSs for the case of a JONSWAP spec-

trum (51 wave components). 

   

   

Figure 5   Bi-chromatic excitation: Integration 

of a dense patch of initial conditions reveals 

qualitatively different “long-term” behaviour of 

particle trajectories. 
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We keep the same setting and calculate the 

FTLE field on a domain containing the initial 

conditions ( 258 t s ). It seems that the “sus-

pect” for the situation depicted above can be 

identified among the repelling LCSs of the 

phase flow. Specifically, the repelling LCS as-

sociating with the hyperbolic trajectory passing 

near (790,16) at time 258 t s  (figure 6, snap-

shots on the left), acts as a transport barrier be-

tween regions of the flow with distinct dynam-

ics. In fact, particles travel along this repelling 

structure towards the hyperbolic trajectory, 

where they are redirected towards different 

branches of the attracting LCS correlating with 

the same trajectory (figure 6, last three snap-

shots, top and bottom row). 

     

     

Figure 6   Same setting as in figure 5. Advection of two adjacent phase-particle parcels (red); inte-

gration of 91.000 and 118.000 (approx.) initial conditions, top and bottom row respectively. 

 

Lastly, a bi-chromatic scenario is consid-

ered, with the frequency and steepness ratio of 

the two related wave components set to 

2 1 0.93    and 
2 1 0.5s s  , respectively. 

The reference wave has been chosen such that 

1 L   and 
1 1 30s  , while nominal speed is 

set to 12 nomu m s . 

We differentiate (9) with respect to time to 

obtain the acceleration field  1 2,a x x  – the 

use of this term is justified from the fact that 

one can interpret (9) as a velocity field on the 

phase plane. Our objective is to track critical 

points of a  i.e., points where the acceleration 

vector vanishes. In Spyrou et al. (2014b) it has 

been conjectured that certain critical points of 

this field correlate with surf-riding events. Fur-

thermore, in Spyrou et al. (2015) it has been 

argued that critical points of a  moving along 

paths that “resemble” to solutions of (9) seem 

to mark regions in the extended phase space 

where ensembles of trajectories are engaged to 

surf-riding. 

In figure 7, a simulation corresponding to 

the aforementioned scenario can be seen (red 

line). Distance is measured from amidships   

(x-axis) while u-axis refers to velocity as meas-

ured by an on-shore observer. Three critical 

points of the acceleration field have been de-

tected at around 220 t s  (these have been se-

lected as they are related to the calculated tra-

jectory; one could find more critical points at 

different space-time intervals). Their paths 

(grey and black lines) have been computed us-

ing the Feature Flow Field method (Theisel & 

Seidel 2003). In the same figure, we have in-

cluded sections depicting LCSs that have been 

identified on phase-space windows around the 
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ship at selected time instants. There seems to 

be a strong correspondence between the paths 

of two critical points (denoted with grey lines) 

and hyperbolic trajectories revealed via the 

FTLE fields. The third critical point, on the 

other hand, appears near the core of an attract-

ing LCS, in a region of the phase flow where a 

surf-riding state can be revealed (Spyrou et al. 

2015). It is noted that for the considered ar-

rangement, this would be a periodic trajectory 

with an attracting character. 

      

Figure 7   Bi-chromatic excitation: Ship trajectory (red line), LCSs at selected time instants and 

paths of three critical points of the acceleration field (black and gray lines). 

 

5. CONCLUDING REMARKS 

Methods for gaining insight into the dy-

namics of ship surge motion in astern multi-

chromatic seas are introduced. Specifically, an 

identification method for Lagrangian Coherent 

Structures (LCSs) is applied on the phase flow 

defined by the surge equation of motion. It is 

based on a well-known scheme with a wide 

range of applications in the literature, which 

involves the calculation of the spatial distribu-

tion of the largest finite-time Lyapunov expo-

nent (FTLE). Through the FTLE field, LCSs 

i.e., influential material lines shaping the pat-

tern of the time-dependent flow, were obtained. 

Their role as phase-flow organizing structures 

was examined. It was found that, for the case of 

a bi-chromatic scenario, LCSs can help to un-

derstand the evolution of ensembles of initial 

conditions, by providing the location of trans-

port barriers, as well as the final destinations of   

particle trajectories. 

Furthermore, the Feature Flow Field meth-

od was implemented for the tracking of fea-

tures, corresponding to elements of the zero set 

of the acceleration field defined by the surge 

equation of motion. Results obtained from the 

tracking of such features and the LCSs identifi-

cation procedure were combined. It has been 

shown that the paths of certain features corre-

late to hyperbolic trajectories of the surge equa-

tion, while others to trajectories with attracting 

character that seem to evolve in the core of 

specific branches of attracting LCSs. 
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