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ABSTRACT 

The paper is consisted of two parts. In the first part we consider in parallel the roll 
and the yaw dynamics in astern seas and we point out a number of interesting 
analogies, and also a few differences, between these two modes. In the second part 
we concentrate more on the roll dynamics presenting some of the results of our latest 
research into ship capsize due to the parametric and the pure-loss mechanisms. We 
present for the first time graphs showing the quantitative effect of surging for capsize. 
Other aspects considered are, the effect of restoring modulation based on two 
frequencies and the dynamic effect of an initially hardening restoring. 

1. INTRODUCTION 

As is well-known, fluctuations of the roll righting-arm in large following waves can 
result in ship roll instability and capsize according to the pure-loss or the parametric 
mechanism ['I]. Fluctuations of a sirr~ilar nature, concerning the motion's stiffness 
term, may take also place in yaw, originating from the combined effect of rudder 
control with the wave induced yaw moment. This could give rise to course instability 
resulting in deviation from the desired heading and broaching [2]. 

Consider a ship operating in long following sinusoidal waves. In order to avoid 
coupling complications let us assume further that, due to high natural frequencies in 
heave and in pitch compared to the encounter frequency, the ship can maintain a 
state of quasi-static equilibrium on the vertical plane. If the waves are relatively 
steep, the geometry of .the submerged part of the hull will vary according to the 
position on the wave. This is likely to be reflected in roll's righting-arm, with a reduced 
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or even negative roll restoring arising when the middle of the ship is near to a wave 
crest. If roll restoring remains negative for sufficient time, so that heel finds the time 
to develop unopposed from some small initial angle up to levels well beyond the 
vanishing angle, then capsize due to the so-called pure-loss of stability niechanisni 
will be realised [3]. In this case the magnitude of roll damping affects little the 
survivability of the ship. Capsize can occur of course also in a typical parametric 
resonance fashion and here the magnitude of damping will be a much more critical 
factor [4]. Practically, the variation of restoring must be however quite intensive, so 
that the large-amplitude roll motion could build-up within a small number of wave 
cycles 151. 

Considering a similar wave environment, the onset of yaw instability represents a 
slightly more complex process; because yaw is always coupled with sway and also 
the control law of the rudder bears a serious influence on the dynamics. Unlike with 
roll, in the absence of active rudder control no restoring yaw moment can exist in still 
water. However in waves the movement of the rudder tends to bring the ship back on 
the correct course. If waves with a length equal to the ship length or longer meet the 
ship from behind, they will create a yaw moment which will be dependent upon the 
angle between the direction of wave propagation and the ship's heading. This wave 
yaw moment works as a positive restoring corr~ponent when the ship passes from a 
wave crest (stabilizing effect). The opposite will be happening in the vicinity of a 
trough because the wave will tend to bring the ship vertical to the direction of wave 
propagation. It results that the comparative strengths of the rudder and wave yaw 
moments will give rise to a restoring fluctuation of a certain amplitude which may 
sometimes have the potential to destabilize the horizontal-plane motion of the ship. 
The commonality of the underlying dynamics of yaw and roll becomes therefore 
prevalent. 

Our first objective in this paper is to identify the correspondence between yaw and 
roll parameters from the perspective of these Mathieu-type phenomena. 
Furthermore, we shall attempt to introduce an approach for assessing a number of 
additional, and often very influential, effects. Most important of these seems to be the 
effect of surge motion. As is well known, when the waves are large, the nonlinearity 
of surge cannot be neglected [6]. A manifestation of this nonlinearity is a virtual 
rescaling of time as the ship is spending longer time on the crests than on the 
troughs of the waves. Despite the significance of this mechanism for the yaw and roll 
motions, there has been no earlier assessment of its effect for ship survivability and 
safety. 

2. A SIMPLE MODEL OF YAW MOTION IN ASTERN SEAS 

Consider the linear differential equations of sway and yaw [7], with the addition of 
wave excitation terms at their right-hand side: 

Sway: (nz' - yi;) +' - Y: v' + (m'xk - 
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Yaw: (m'x, - N ; ) + '  - Niv' + (I:  - ~ l ) i . '  + (m'xb - ~ : ) r '  = N i 6  +N;,,, (2) 

In the above v' ,  r' are respectively sway velocity and yaw angular velocity, 6 is the 

rudder angle, rn' is ship mass and x, is the longitudinal position of the centre of 

gravity; K ,  r ,  N: , Ni are acceleration coefficients (added masseslmoments of 

inertia) and YVf, Yrf , Ni  , N: ,Y, are velocity coefficients (hydrodynamic dampirlg 

terms). The wave's sway force and yaw moment are respectively, q',,,,,,, N;,,,, . The 

prime indicates nondimensionalised quantity and the dot differentiation over time. We 
use ship length L for length scaling, p ~ '  for mass and L/U for time. 

At first instance we shall assume that the yaw and sway velocities are restrained 
from building-up to high values (thus they remain small and the resulting damping 
forces may be considered linear) through use of appropriate rudder control. 
Additionally, ship behaviour is examined at "some distance" from the region of surf- 
riding, so that, for this first part of the paper, surge velocity is nearly constant. Then, 
we express the wave terms Yi,,,), N;,,, in respect with the frequency of encounter 

(rather than as functions of absolute wave frequency and position): 

qLave, = Y; v sin(w: t ' )  

N;,,, = Nk v cos(w:tf) 

The following notation is applied: Y;, Nk are wave forcelmoment coefficients; v is 
the ship's heading relatively to the wave ( v  = 0 when the sea is exactly following - 
generally, v is assumed small). i 
Consider further rudder control with a linear law based on two gains, k,  and k,  : k ,  i 
multiplies the instantaneous heading deviation from the desired course vr, while k ,  
multiplies yaw's angular velocity: 

Substituting (3), (4) and (5) in (1) and (2), uncoupling yaw from sway and using well 
known expressions for system gain and time constants, K', T I f ,  T,' ,  Ti [8], the 
following differential equation of heading angle is obtained: i 

E 

The above third-order differential equation has time-dependent coefficients in two 
places. As is well known however, if T,' is much greater than T,' and T; ,  we can use 
the so-called simplified yaw response model of Nomoto [8]. In that case the order of 
equation (6) is reduced by one: 
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K' ,T t  are respectively system gain and time constants, y is relative heading angle 
(assumed small), 6 is rudder angle, A '  is wave excitation amplitude, o: is the 
encounter frequency and a  is a phase angle. 
Coupling of (7) with the autopilot (5) and dropping for simplicity of the phase angle 
a ,  leads to: 

V '  + Y ui' + [l - h cos(oLt')]y = j 

In the above o ~,,,,, , = .,/m, y = (1 + ~ ; K ' ) / T '  (damping), h = A'/k,Kt 

(amplitude of parametric variation of restoring), j = k1Kty,/T' . It is easily recognized 

that (8) is Mathieu's equation with the addition however of bias-like external static 
forcing term, j . 

For stability, positive T' is required as l / T t  is the inverse of the damping of the 

unsteered vessel. However, large positive T'  implies slow convergence towards the 
corresponding steady rate-of-turn which is determined by the value of the static gain 
K t .  A trend exists for large T' to appear in conjunction with large K t  which gives a 
nearly straight-line spiral curve. The effect of active control on damping is 
represented by the quantity ki Kt/T' .  It depends thus on the yaw rate ("differential") 

gain term in the autopilot. If T' < 0 ,  suitable choice of k i  can turn the damping of the 

system positive since k; multiplies the positive quantity K'/Tt , thereby yielding 
stability for the steered ship in calm sea. The wave effects are lumped into the 
restoring and independent-periodic-forcing terms since the quantities K t  and T' 
were assumed to be, at first approximation, unaffected by the wave. If the amplitude 
of wave excitation A' exceeds k 1 K 1 ,  then on the basis of (8) negative yaw restoring 

will arise around the trough. Should the duration of operation under negative 
restorivg be long enough, undesired turning motion will be initiated ("broaching"). 
From a dynamics perspective there is complete equivalence with a capsize event of 
the so-called "pure-loss" type. It can be avoided if the proportional gain k1 is chosen 

to be always greater than At/K'  even for the most extreme wave environment where 
the ship will operate (it should be a matter of further investigation to what extend this 
is technically feasible). A notable difference between the manifestation of this 
instability in roll and in yaw is that in roll it arises near the crest of the wave, whereas 
in yaw the ship becomes vulnerable near a trough. 

We may rewrite (8) on the basis of heading error y, = y - y ,  and then apply the 

transformation s = o&,, t' : 

2 1 

d v ;  y1 + 25 - + [ I -  h cos(C2s)b = f cos Rr 
ds ds 
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1 2  
where i2 = O : / W & ~ , ~ ,  , h = ~ ' l ( k ,   and f = A' v , / ( ~ '  ) . The damping ratio 

is given by the expression: 25 = (1 + k , ~ ' ) / d W  (the presence of k ,  should be 

noted in < ). 
3. COMPARISON WITH THE ROLL EQUATION 

It is obvious from (9) that parametric instability of yaw may also arise, very much like 
that of roll. To establish the analogy we remind that the generic equation of roll in a 
"following" sea linearised in terms of the roll angle is: 

cp' is the scaled roll angle, cp' = cplcp, , with cp the true roll angle and c p ,  the angle of 

vanishing stability. Also, z = a,(,,,, t . The damping ratio is given in this case by, 

25 = B w o ( r o l l , / ( ~  ~ ( G M ) )  where B is the dimensional linear damping coefficient, 

M is ship mass and (GM)  is the metacentric height. Roll's natural frequency is 

a,(,,, = ~ M g ( G M ) / ( I + M )  . With substitution of a,(,,, we may obtain further, 

25 = B / ~ ( I  + M) M (GM)  . Also, the amplitude of the parametric is 

h = G(GM)/(GM) where S ( G M )  is the difference of metacentric height at the crest 
from the still water value. This is a common assumption but of course it results in a 
highly idealised formulation because the average ( G M )  has no reason to be 
identical with the still water (GM) .  In addition, the variation from trough to crest may 
not be sinusoidal. 

Conditions for "exact" resonance 

Let us neglect for a while the damping terms of (9) and (10) in order to find out how 
the Froude number of the vertex of the principal resonance varies between roll and 
yaw. For overtaking waves the frequency of encounter, a,,  is positive and the 
condition of exact resonance is written as: w,/a,  = 2 / n ,  n  = 1,2,3, .... where a,  can 

be the frequency of encounter of either yaw or roll. Thus with increasing n the 
vertices will accumulate near to zero frequency of encounter. For v,  = 0 we can 

write, we = (2rr/A)(c - u). 

In yaw time is commonly nondimensionalised on the basis of U / L  (noted the 

resulting time dependence). Therefore as far as yaw is concerned, 
w = L C  - ) ( A )  Then, with the substitutions a: = 2a&,,, I n  and 

c/U = Fn,,,,,/Fn where Fn,v,,e is the Froude number corresponding to wave 
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celerity, are obtained the parametric equation of the vertices of the corresponding 
undamped system: Fn = ~n,,/[l+ l o ~ ( , , , , / n n ~ ) , .  Given that Fn,, = ,/m 
we arrive finally at the expression: 

Considering the domain of variation of the natural frequency of yaw, 

w A,,,, , = ,/m, for conventional ships the ratio K'/Tt is usually within the 

range [0.3 - 1.41 (see for example [9]). As a matter of fact a;(,, should lie in the 

range [0.55& - 1.18&]. With a proportional gain k ,  between 1.0 and 2.0. 

w;(,lflMl) should be between 0.55 and 1.67. For roll on the other hand, the natural 
frequency is nondimensionalised on the basis of ship length and acceleration of 

gravity, = w o r n .  The different nondimensionalisation results in a different 

parametric expression of the critical Froude number: 

Relative magnitudes and effect of damping 

Even when a ship is equipped with bilge keels, the damping ratio is usually quite low. 
Noted that the roll damping ratio will change if the position of the centre of gravity is 
varied. As far as yaw is concerned, the damping ratio depends strongly on the 
autopilot's gains. Common values are in the range 0.8 < < < 1.0 [lo]. Here lies 
therefore another significant difference between the roll and yaw equations: The yaw 
damping ratio is normally very large. As a matter of fact, in order to be placed in one 
of the regions of resonance, the loss of yaw restoring at the trough should be very 
considerable. Usually this means that very steep waves will be required. 
Unfortunately, for such highly damped motion it is not easy to derive slft9ple 
expressions for the critical parametric amplitude. Even the expression of Gund@r@~fl, 
Rigas & Van Vleck [ I  I ] ,  which is applicable also for large damping valuer;, would not 
work as 6 approaches 1.0: 

Nonlinearity 

The roll behaviour considering the nonlinearities that in reality exist in the restoring 
(strong) and in damping (mild) is relatively well understood as it has been studied by 
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a number of investigators, for example [12-151. For the yaw equation, if the autopilot 
is relatively effective the nonlinearities will reside mainly in damping. 

SOME OTHER ASPECTS OF PARAMETRIC ROLLING 

Bi-chromatic waves 

Several aspects of parametric rolling 
have been considered recently [5]. 
One of these is the effect of having a 
quasi-periodic variation of (GZ) rather 
than the ordinary periodic one. The 
consideration of a Mathieu-type 
equation with internal forcing based on 
a single frequency represents a highly 
idealised scenario. In Fig. 1 are shown 
the stability transition curves when two 
independent frequencies are present. 
This particular graph was drawn with 

I '  1 the second frequency being 75% of the 
o s 10 15 20 25 first. Also, the amplitude of parametric 

4oO2 forcing at the second frequency was 3 
a=- 

we2 times that of the first. It is noticed that 
secondary "spikes" have grown on 

Finure 1: Parametric with two incommensurate each primary resonance region. 
frequencies. The inserted graph shows a time Further research has shown that their 
realisation of the time-dependent restoring part. 

number tends to increase as the 
second frequency departs from the 
first. 

Hardening restoring 

Another matter considered was the effect of an initially hardening restoring on the 
stability transition curves. We have assumed a quintic restoring curve which can be 
parameterised on the basis of a single parameter 1 .  In scaled form the expression 
of restoring is: R(pl) = p' + laf3 - (1 + h)pt5 where p' is the scaled roll angle with 
respect to the vanishing angle. Increase of 1 means basically stronger initial 
hardening. The parametric variation was applied only on the linear term. In Fig 2 are 
shown the transition curves for restorirrg which is nioderately or strongly hardening. 
Generally, a process of transforniation of the boundary from sharp to 'brittle' is in 
place as 1 is increased. Fractal-like stability boundaries have been presented earlier 
for a generic cubic restoring [15] and for a more exact restoring curve [16]. 

The effect of surge 

This is a major issue currently treated in detail but here it will be discussed only 
briefly. We have found what is the quantitative effect of surge on capsize due to the 
parametric and the pure-loss mechanisms. As is well known, an implicit assumption 
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made in the analysis of these two modes of capsize is that the forward speed may be 
assumed as constant. Such an assumption is not always valid. Generally, for 
dangerous dynamic behaviour of roll to arise, steep and long waves are required. 
Waves of this kind will incur also significant nonlinear effects on surge. The 
characteristic of large-amplitude surging is that it is asymmetric and the ship stays 
longer near the crests than near the troughs. This effect is imported into the yaw and 
roll dynamics through the restoring terms of the corresponding equations. The 
nonlinearity of surge is detrimental for roll stability because around the crest (where 
the ship stays longer) restoring capability is reduced. For yaw on the other hand, the 
effect is opposite. Yaw stability is not worsened because the passage of the ship 
from the trough is quicker. The danger arises in steeper waves and especially during 
the process of capture in surf-riding. 

F i ~ u r e  2: Capsize boundaries for increasingly hardening restoring. The left graph is with moderately 
hardening restoring ( A  = 2 ) and the right one is with strongly ( A  = 17 ). 

The three main forces acting in the surge direction are the resistance, the wave and 
the propulsion force. As is well known these result in a pendulum-like equation far 
surge the exact form of which may be found for example in [I 71. This surge eqblatl~n 
should be solved simultaneously with the following equation of roll (or that sf yaw for 
broaching): 

@ ' + 2 p 4 5 ' + o ~ [ l - h  c o s ( k ~ ) ] ~ ' - ~ ~ ' ~  = ( I  (1 3) 

Note that the cosine is written in terms of the position Qn the wava, x ,  rather than in 
terms of time. The coupling to the surge equation exists because of the presence of 
x in the restoring term of the above roll equation. We can show now how the 
transition curves are modified when roll is coupled with surge. 
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Fisure 3: Coupled surging and rolling leading to capsize 
4 

The calculations were based on a ship with o,(,, = 0.84 (o,(,, = 1.577) and I 
i 

p = 0.0585. We have examined whether the normalised roll angle (p' exceeds the 
1 

1 
value of 1 (from an initial perturbation 0.01 and with zero initial velocity) within a 
specific amount of time ( t  = 200s). Fig. 3 gives an illustrative example of time 

i 
i 

realisation for the coupled surging and rolling leading to capsize when strong 1 
nonlinear effects in surge are present. Surge motion can have a very profound effect 1 
on the "capsize" domains as realised from the stability diagram of Fig. 4. Rather than .! 
plotting the frequency ratio versus the parametric amplitude, we found more relevant i 

to present the information in terms of 
the Froude number. For the 

4 
\ considered ship, the principal 

resonance cannot be realised in 
following waves because the required 
Froude number is negative (the ship 
should be backing rather than going 
forward). The lower part of the 

1.2 fundamental is the only place where 
there is some commonality with the 

1.1 conventional ('damped') Strutt 
diagram. The upper part of the 

I 

/' 
fundamental tends to become 
considerably wider. The immediately 

I ,/ 
\w .. next resonance occupies an enlarged 

0.9. 
o. o *  0. 3 5  domain; but the following two seem to 

Nominal Fn degenerate. This may relate with the 
emergence of a surf-riding domain 
where the behaviour of the ship is 

Fiqure 4: Capsize boundary with surging considered. 
stationary and travels with the wave 

5. CONCLUDING REMARKS 

When roll stability in a following sea is examined, it is common to distinguish between 
two mechanisms of capsize: Pure-loss of stability, where the ship departs from the 
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state of upright equilibrium due to negative restoring on a wave crest. Then heel 
increases monotonically 1.1ntil the ship is overturned. In this mode the magnitude of 
damping plays little role. Parametric instability, which is the classical Mathieu-type 
mechanism where the build-up is oscillatory and the magnitude of damping is very 
important. Instabilities of a similar nature are possible in yaw, resulting in the 
behaviour known as broaching: The parallel to the pure-loss mechanism can be 
termed as broaching due to surf-riding. It can happen at Froude numbers near to the 
wave celerity. The parametric-type mechanism of broaching is relevant for lower 
Froude numbers but requires higher wave steepness. Extra forcing terms and 
couplings sometimes alter sigr~ificantly the domains of instability. Therefore additional 
studies are needed in order to understand and quantify these effects so that 
improved design and operational guidance could be developed. 
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