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ABSTRACT 

The possibility to use in ship design certain re- 
cent results of the nonlinear analysis of beam- 
sea rolling in order to maximize resistance to cap- 
size is discussed. The loci of transient and steady- 
state capsize are approximately located on the 
plane of forcing versus frequency through 
Melnikov analysis, harmonic balance and use of 
the variational equation. These loci can be 
parametrized with respect to the restoring and 
damping coeficients. The minimization of the cap- 
size domain leads naturally to the formulation of 
an interesting hull optimization problem. 

1. INTRODUCTION 

Recent efforts to understand the mechanism 
of ship capsize in regular beam seas have revealed 
enormous complexity in large amplitude rolling 
response patterns, even though these investiga- 
tions have relied on simple nonlinear, single-de- 
gree models [I]. Whilst the existence ofbistability, 
jumps and subharmonic oscillations near reso- 
nance were known from earlier studies based on 
perturbation-like techniques ( see for example [2], 
[3] on the forced oscillator; and [4] for a more 
ship-specific viewpoint) a whole range of new 
phenomena including global bifurcations of in- 
variant manifolds, indeterminate jumps and chaos 
have been shown recently to underlie roll models 
with cubic or quartic potential wells. There are 
good reasons to believe that such phenomena are 

generic and their presence should be expected for 
a wide range of ship righting-arm and damping 
characteristics. 

For the practising engineer this new infor- 
mation will be of particular value if it can be 
utilized effectively towards designing a safer ship. 
So far, rather than trying to discriminate between 
good and less good designs in terms of resist- 
ance to capsize in beam seas, the current analy- 
ses set their focus mainly on developing an un- 
derstanding of the nature of the nonlinear re- 
sponses in their various manifestations. How- 
ever it seems that the time is now ripe for ad- 
dressing also the design problem. Attempts to 
develop an interface between nonlinear analysis 
and ship design are by no means a novelty since 
they date back, at least, to the discussions about 
Lyapunov functions in the seventies and early 
eighties [5], [6]. Nonetheless, a meaningful and 
practical connection between nonlinear analysis 
and ship design is still wanting. 

In our current research, the main ideas and 
some preliminary results of which are presented 
here, we are exploring the potential of two dif- 
ferent assessment methods, based on well known 
approximate escape criteria of forced oscillators. 
The first method capitalizes upon the so-called 
Melnikov criterion which provides a fair esti- 
mate of the first heteroclinic tangency 
(homoclinic for an asymmetric system) that ini- 
tiates erosion of the safe basin, Fig. 1 [7], [8], 
[9]. In the second method the key concept is the 
wedge-like boundary of steady-state escape on 
the forcing - versus -frequency plane [ 101, [ 1 11, 



Fig. 1: Intersection of stable and unstable 
manifolds 

[12]. The left branch of this boundary is the 
locus where jumps to capsize from the lower fold 
take place, Fig 2. As for the right branch, it is 
generally practical to assume as such the sym- 
metry-breaking locus near resonance (or, the first 
flip for an asymmetric system). 

These two criteria of transient and steady- 
state escape should be applied in conjunction with. 
general-enough families of restoring and damp- 
ing curves. A seventh-order polynomial is often 
seen as a suitable representation of restoring (see 
for example [ 131). For damping, however, at 
this stage we shall confine ourselves to the 
equivalent linear one. Once the roll equation ob- 
tains a specific parametric form, expressions can 
be developed linking the coefficients of the re- 
storing polynomial with damping, forcing and 
encounter frequency to the capsize loci. The ob- 
vious usefulness of these expressions is that they 
allow us to assess how hull modifications can af- 
fect the thresholds of transient or steady-state 
capsize. This leads to the setting up of an opti- 
mization process with governing objective the 
definition of a hull characterized by maximum 
resistance to capsize. The procedure offers also 
the interesting opportunity to evaluate the steady- 
state and transient criteria against each other, with 
the view to establishing whether they lead to simi- 
lar optimum hull configurations. 
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Fig. 2 : Bifurcation diagram of the escape equation, 
41. 

- x is the scaled roll angle, x= $/qv, 
- $ is the actual roll angle, 
- $v is the angle of vanishing stability, 

- ~( i )  is the scaled damping function, 

- a =  W/W,, 
- o is the frequency of encounter between the 

ship and the wave (as we assume a beam-sea 
this is also the wave frequency), 

- o, is the natural frequency, o,= [ W (GM 
- W is the weight of the ship, 
- (GM) is the metacentric height, 
- I is the second moment of inertia including 

the added moment, 
- F is the amplitude of the scaled external pe- 

riodic forcing, F= Aka  /qV , 
- Ak is the wave slope, 
- B is a scaled constant excitation, for example 

2. KEY FEATURES OF THE SINGLE- due to steady wind, 

-WELL OSCILLATOR - R(x) is a scaled polynomial that approximates 
the restoring curve with *(x) ldx =I at x=O, 

- z is nondimensional time, z = a, t 
Consider the follow>ng single-degree - t is real time, 

model for ship rolling, [I]: 

;c '+D(; )+R(x)=B+Fcos(L2~)  (1) Let us consider for a while an asymmetric 

where : escape equation with periodic forcing, linear 



damping and a single quadratic, "softening" type, 
nonlinearity in restoring : 1 3.m3.,xcc b,as,nh .,- t L5c=ne! 

This equation, which can be regarded as the sim- 
plest possible nonlinear equation akin to the cap- 
size problem, has been studied to considerable 
depth, Figs. 2 and 3 [14]. Near resonance the 
response curve exhibits the well known bending- 
to-the-the left property that creates the lower fold 
A and the upper fold B. Point A is a saddle-node 
and a jump towards either some kind of resonant 
response or towards capsize will take place if 
the corresponding frequency threshold is ex- 
ceeded. On the resonant branch different types 
of instability can arise. If the wave slope Ak is 
slowly increased, period-doublings (flips) are no- 
ticed that usually lead to chaos (a "symmetric" 
system with cubic instead of quadratic 
nonlinearity must first go through "symmetry- 
breaking" at a supercritical pitchfork bifurcation). 
Further increase in forcing leads ultimately to 
the so-called final crisis, where the chaotic 
attractor vanishes as it collides with a saddle 
forming a heteroclinic chain. At relatively high 
levels of excitation there is no alternative "safe" 
steady-state and subsequently escape is the only 
option. Long before such high levels of forcing 
have been attained, however, the "safe" basin has 
started diminishing after an homoclinic tangency 
(heteroclinic in the case of a symmetric system). 
The heteroclinic (homoclinic) tangency is usu- 
ally considered as the threshold of transient es- 
cape. Melnikov analysis allows approximate ana- 
lytical prediction of the relation between the 0s- 
cillator's parameters on this threshold. 

In a diagram of Ak versus R (for constant 
damping), the earlier discussed thresholds ap- 
pear as boundary curves, Fig. 2. The locus of the 
first homoclinic tangency can lie at a consider- 
able distance from the "wedgeM-like boundary 
formed by the fold and symmetry breakindpe- 
riod doubling loci. It is of course desirable that 
the Melnikov curve lies as high in terms of Ak 
as possible. It follows that a desirable hull con- 
figuration should present the minimum of its 
Melnikov curve at Ak as high as it can be. Alter- 
natively, it is possible to take into account a range 

Fig. 3: Resonance response surface, [I 41 

rather than a single frequency, thus seeking to 
maximize the area below the Melnikov curve be- 
tween some suitable low and high frequencies, 
respectively R, and R,. In the ideal case where 
the Melnikov curve can be expressed explicitly 
as Ak(R), one will be seeking to identify the com- 
bination of restoring and damping coefficients, 
representing the connection with the hull, that 
maximizes the quantity 

More sophisticated criteria based on wave energy 
spectra and thus incorporating probabilistic con- 
siderations could also be considered. These are 
left however for later studies. 

A similar type of thinking can be applied 
for steady-state capsize. Here one could require 
the lowest point of the wedge to be as high as 
possible in terms of forcing; or again, the area 
under the wedge between suitable R, and R, to 
be maximized. One possible way of defining R, 
and R, rationally could be attained by drawing 
the breaking-wave line on the (Ak, R )  plane and 
taking its intersections with the fold and flip 
curves. Unfortunately for the considered range 
of frequencies this line may not intersect the flip 
curve. The rational definition of R, and R, 
needs further consideration. 

Assume finally the following "symmetric" 
representation of restoring : 



Fig. 4 : Restoring curve, (4a), and steady response 
curve, (4b), for a,=1.5 and a,=l 

The main advantage in using the seventh-order 
polynomial is that it provides two points of in- 
flection, see Appendix. Here a, , a, are the two 
free parameters of the restoring curve. The coef- 
ficient of the seventh-order term is selected so 
that the saddle points are always at x= 1 and - 1. 
Thus we shall be dealing from now on with the 
following roll equation, Fig. 4: 

x +  2< x + x +  a ,x3-  a2x5+ (-1-al+a2)x7 

3. MELNIKOV-BASED CRITERIA 

Details about Melnikov analysis can be 
found in a number of texts and no attempt will 
be made to repeat these here, e.g. [15], [16], [17]. 
The method is based on the calculation of the 
signed distance between the stable and unstable 
manifolds of one or more saddle equilibrium 
points when this distance is small. Melnikov 

analysis can also be regarded as an energy bal- 
ance method where the total energy dissipated 
through damping should equal the energy sup- 
plied through the external forcing [ 141. A more 
sophisticated version of the method can be ap- 
plied also for highly dissipative systems [18]. 

Melnikov analysis includes basically the 
following stages. Firstly we calculate the 
Hamiltonian H of the unperturbed (< =F=O) i 

system and from this the heteroclinic 
(homoclinic) orbit as dxldz=p(x). Then, we at- 
tempt to derive, if possible analytically, the time 
variation along this orbit: namely to derive ex- 
pressions for x and dx/dz that are functions of 
time, x = h,(z) and dx/ d~ = h2(z). This often 
represents the first major difficulty in applying 
the method. The next step is.to calculate the 
Melnikov function: 

where, x = [x, dxIdzlT ; dxldz = f [x(z)] is the 
equation of the unperturbed system and the func- 
tion g[x, z ]  is periodic and represents the damp- 
ing and forcing terms considered as constituting 
a perturbation. Also, z, is phase with 0 < z, < 
27cIL2. The symbol means to take the cross prod- 
uct of vectors. The main objective in this method 
is to identify those marginal combinations of pa- 
rameters where the Melnikov function admits real 
zeros. 

Application for equation (3) : 

Unperturbed system : 

;c'+ x +  a, x3 -a2x5+  (-I-a1+a2)x7 =O (5) 

which can be written in the form : 

Hamiltonian: 

H = 0.5 {x,2 + xI2 + (a, 12) x14 - (a2/3) x16 + 
+ [( -1-al+a2 )I41 x," (7) 



Heteroclinic orbit : 

To make sure that the method produces mean- Let the time variation along the heteroclinic or- 
ingful alternative design solutions, additional bit be : x = h,(r) and dx/dr = h,(r). These can 
conditions must be supplied. Current IMO or be found with appropriate variable transforma- 
Naval GZ -curve shape criteria use as benchmarks 

tions, or they can be approximated. 
the highest point of the curve as well as certain 

Melnikov function : areas under the curve (up to 30 and 40 deg as 
+ ar well as between the two) see for example [19]. 

M(z~)  = L x2 (F cOs (r-rdl - 25 ~ 2 ) ~  = The search for maximum of the objective func- 
+ - tion should thus be constrained by suitable extra 

= F cos(Q 7,) 1- h,(r ) cos(Qr) d r  conditions that will guarantee that stability crite- 
ria in common use are being satisfied (see Ap- 

- F sin(Q r,) h J r )  sin(L2.r) d r  - pendix). 
+m 

- 2 c  5- h;(~) d r  
(9) 

The second integral is expected to be zero be- 
cause h,(r) sin(Qz) is an odd function [h, (z) is 
expected to be even, sin(Qr) is of course odd]. 
However if the hoinoclinic orbit is considered it 
is the first integral that can be zero. 

The condition to have simple zeros for the 
Melnikov function written in terms of AX- is thus: 

The threshold AX- that gives rise to equality in 
(1 O), Ak,,;, will mean tangent manifolds and will 
thus define the Melnikov curve Ak=g(Q). 

Criterion 1: 

4. STEADY-STATE CRITERIA 

These criteria require to locate the fold and 
symmetry breaking boundaries. Firstly, a low- 
order analytical solution of (3) is found with use 
of the method of harmonic balance. This solu- 
tion is subsequently 'coupled' with suitable sta- 
bility conditions. To identify the fold it is rather 
straightforward to request a Q I ax, = 0, where x, 
is the amplitude of roll motion, making sure of 
course that the lower fold A is the one consid- 
ered. To approximate the locus of symmetry 
breaking we derive the variational equation and 
we find the relation that allows the existence of 
an asymmetric solution (or of a subharmonic so- 
lution in the case of an asymmetric system). 

(a) Solution with harmonic balance 

Akmi, (Q) to become maximum in terms of We rewrite (3) as follows : 
the parameters a, , a,, @,, , c  . It is understood of .. 
course that as2c =bl[W(GM)II"< where b is the x + 2c x + x + a,? -a2x5 + ( -1 -a,+a,) x7 = 

true dimensional damping, (GM) and I partici- = F c o s ( Q r -  8 ) (12) 
pate also in the optimization. where 8 is the phase difference between excita- 

tion and responie that must be identified. We seek 
Criterion 2 : a steady-state solution x = x, cos(Qr). We sub- 

The following objective functionsshould stihte this into (121, expand the trigonometric 
be maximized: terms, retain only the terms of harmonic fre- 

quency and equate the coefficients of cos(Qr) and 



sin(az) on both sides of the equation, obtaining 
finally: 

- 2 5  a 
8 = arctan ( 

N 
) 

where 

An alternative useful form of the above is 
obtained by solving for R : 

With plus we obtain the high frequency branch 
and with the minus the low one. 

(a) Approximation of the fold 

With differentiation of (1 3) in terms of x,, 
imposition of the condition aRlax, = 0 and some 
rearrangement, the following relation is derived: 

sz 4 - ( 2 ~  + XP- 45 2 ) ~  (M 2 + M ~rx , )=  o 
(18) 

An alternative expression based on F can also 
be derived : 

. , where 

27( -1 - a, + a,) x,' + 
8 (20) 

Finally x, must be eliminated between (1 7) and 

(1 8) and also F must be written in terms of Ak to 
obtain an expression, say G (Ak,a)= 0, that de- 
fines the fold locus on the (Ak,R) plane. 

(c) Approximation of the symmetry breaking lo- 
cus 

Consider again (3) and let x be increased 
by a very small amplitude 4 , such that 4 ' , 5 
etc. can be neglected. Then by substituting x with 
x + 6 in (3) we obtain: 

where q(x) = R(x) - F cos(i2 2) (22) 

In (21) the quantity inside the first brack- 
ets is zero by definition and therefore we are left 
only with the so-called variational equation [20], 
[21.] : 

wherex = x, cos(Rz) . We want to find the thresh- 
old where an asymmetric solution first appears, 
so we consider a perturbation 4 that includes 
constant term and second harmonic : 

Parenthetically is mentioned that if the asymmet- 
ric equation was used we should consider a 
subharmonic perturbation : 

With substitution of x and 4 [from (25)] in 
(2 1) and application of harmonic balance, where 
we retain only terms up to second harmonic, we 
obtain a linear system of algebraic equations in 
terms of b, , b2c and b, : 



Coefficient of the constant term 

3 15 35 

(GM)]. Also in respect to the area criterion, if 
Ak, (a ) ,  Ak, ( 8 )  are explicit representations of 
wave slope in terms of 8 at the fold and flip loci 
respectively, we want: 

to be maximum. 
Coefficient of cos(28z) 

Coefficient of sin(28z) 

The condition A = 0 where A is the determi- 
nant of (27), (28) and (29) provides the sought 
equation for the symmetry-breaking locus. It is 
interesting that the expression is analytically solv- 
able for 8. Again however the elimination of xo, 
through combining with (17), is problematic. 

(d) Derivation of steady-state criteria 

The lowest point of the wedge corresponds 
obviously to the intersection of the curves 
G(Ak,8) and A(Ak, 8 )  = 0. Let us define this 
point as (Ako,Q0). We want to maximize Ako in 
terms of the coefficients a,, a,, QV and also 
[which, it should not be forgotten, includes 

5. STEADY VERSUS TRANSIENT 
CAPSIZE CRITERIA 

Although the transient and steady-state cap- 
size criteria are dynamically different and the 
basin erosion begins much earlier than the first 
period doubling, it is not known how they reflect 
on the actual optimization parameters. Do they 
result in similar optima or do they produce con- 
siderably different ones ? With the earlier devel- 
oped tools it should be possible to infer to what 
extent the steady-state and capsize criteria coin- 
cide in their predictions of the optimum hull con- 
figuration. It is hoped that it will be possible to 
provide specific answers in a future publication. 
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Consider the following polynomial for restoring: 

R(x) = x + a, x3 - a, 2 + (-1 - a, + a,) x7 

Area under the curve : 

The 'true' area under the GZ($) curve is : 



The area up to an angle q3 is : 

The maximum of the curve is found by solving 
for x the equation dR(x) /dx = 0 : 

(x2)3 - (x2)2 + 
7(- 1 -a,+a,) 

(x2) + 
7(- 1 -a,+ a,) 

1 + = 0 
7(-1 -a,+ a,) 

There is one real and positive root which can be 
found analytically with, for example, 
Mathematics . For the equation 

the real and positive root is : 

where : 

Points of inflection at d2 R(x) 1 dx2 = 0 : 

10 a, + - 4 100 a; - 252 a,(-I-a,+ a,) 
xinn=.I 

42 (- 1 -a, + a,) 




