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ABSTRACT 

A method to analyse the transients arising in 
broaching is presented. Currently, a proper 
framework for the systematic study of transient 
responses of multidimensional systems seems still 
to be lacking. This is even more true in the ma- 
rine field where transient coupled motions are 
very rarely studied. The specific transition that 
is presently under study is the one triggered by 
a sudden control parameter variation effected in 
the vicinity of the threshold of surf-riding. This 
can lead to surf-riding, periodic motion, 
broaching or capsize. Each one of these types of 
behaviour is associated with a speczJic domain 
in the plane of actual or desired heading and 
nominal Froude number. The organisation on 
this plane is presented. This leads to the estab- 
lishment of a simple procedure for quantzfiing 
the tendency of a ship towards broaching. 

1. OVERVIEW 

Recently there is increasing awareness 
about the effect of nonlinearity on large-ampli- 
tude ship motions and, in particular, about the 
critical role that it can play for safety. The phe- 
nomena of ship capsize and broaching, both of 
an escape nature, are two characteristic exam- 
ples of nonlinear behaviour that have been re- 
cently the subjects of in-depth studies, [I], [2 ] .  

The best known feature of nonlinearity is 
that it often allows the existence of multiple so- 
lutions, 'born' at bifurcation points. Bifurcations 
are basically smooth or discontinuous changes 
in the character of the response and they can be 
local or global. In their more critical versions, 
they are associated with sudden changes of re- 
sponse amplitude or with jumps towards remote 

and usually undesirable destinations. A very use- 
ful summary and classification of the known types 
of bifurcation for energy-dissipating dynamical 
systems can be found in [3]. Quite often how- 
ever, the knowledge of bifurcations, especially 
of the local ones, does not suffice in order to as- 
sess the safety margin of an engineering system. 
Given for example an initial state and a certain 
excitation level, one cannot say in general 
whether there will be an escape towards types of 
behaviour that are regarded as unacceptable. This 
represents a problem of transient dynamics which 
should be considered in parallel with the study 
of bifurcations of steady-state responses. 

The possibility to predict ship motions be- 
yond the realm of linear theory is obviously 
highly appealing, this however is confronted with 
shortcomings in two key areas: In solving the hy- 
drodynamic problem which would allow calcu- 
lation of the external loads acting on the ship; 
and in eliciting the variety of response patterns, 
the corresponding manifolds and the subsequent 
state-space organization for a dynamical system 
which, in general, is multi-degree. 

It is well known that the accurate calcula- 
tion of the forces acting on ships moving at high 
speed in large waves represents a very difficult 
problem for which practical, 'universally' ac- 
cepted solutions will take some time to be pro- 
duced. From the perspective of dynamical analy- 
sis, the standard method to get round this is 
through a judicious combination of ship theory, 
experiment and intuition with main objective the 
derivation of relatively simple mathematical 
models that, on the basis of the concept of uni- 
versality of dynamical systems, present poten- 
tial to capture the key features of system response. 

Nonlinear ship motion analysis is 'tradition- 
ally' carried out in respect to the roll problem in 
beam seas. This corresponds to the single-degree 



forced oscillator which has been under intensive 
investigation with analvtical and numerical tech- 
niquesufor a number df years [4], [5]! [6]. The 
study of other ship nlotions is however often 
severely restricted by the necessity to account 
for iliultidimensional dynamics in a global sense. 
By-and-large, this is still an uilresolved matter. 
In the marine field even the most ambitious stud- 
ies of multi-degree systems do not go much fur- 
ther than the stability analysis of steady-states 
and the occasional simulation, [7], [3], [9]. These 
approaches alone call offer however only liinited 
insights into the nature of phenomena, broach- 
ing being here one typical example, where tran- 
sient dynamics seem to play an important role. 

An effort to develop a suitable framework 
for the study of broaching that would include 
steady state as well as transient analysis has been 
presented recently, [2], [I 0],[1 I 1, [12]. In the 
present paper we set in focus the transient mo- 
tions that are connected with phenomena of cap- 
ture to- and escape froin surf-riding that have 
been shown earlier to lead to broaching, [2]. Some 
preliminary studies about the effect of autopilot 
gains on the boundary of the broaching and cap- 
size domains on a suitable plane of control pa- 
rameters' are also reported. 

2. KEY ELEMENTS OF THE APPROACH 

It is well established that in broaching 
nlotions in at least four different directions par- 
ticipate in the dyi~amics (surge, sway, yaw and 
roll, including also rudder control and assuming 
quasi-static equilibrium in the heave and pitch 
directions). This leads to an 8-dimensional, or 
higher, state-space which, obviously, one can 
visualize only tlxough its 2-d or 3-d projections. 
It is reminded that by state-space we mean the 
'enlarged' physical space that includes velocities 
in addition to displacements. The usual coinpact- 
form representation for an autonoinous dynami- 
cal systein is dz!dt = f (z; a) where z, a are re- 
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Fig. 1 : A 3-d projection of the stationary 
states of surf-riding 

Fig. 2 : Chaotic surf-riding, [18]: (a) Phase-plot, and 
(b) power spectrum. The corresponding 
Lyapounov exponent is + 0.01. 
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Fig. 3: l d e t  and outset of the saddle of crest 
that 'control' capture in surf-riding 

spectively the state and control vectors; t is time; 
and f is a function that generates thepow (the 
geometric equivalent of the entirety of solutions 
of the vector differential equation) in the state- 
space. The detailed form of the mathematical 
model (in other words of the function f )  has been 
presented earlier and will not be repeated here, 
[2], [ l l ] .  It should only be mentioned that, in 
order to bring the equations into the autonomous 
form one has to present the wave loadings as 
dependent on the relative position of the ship on 
the considered regular wave rather than as fi~nc- 
tions of time. This can be done by using a system 
of coordinates inoving with the wave celerity. 

(a) Analysis of steady-states 
Usually nonlinear analysis begins by locat- 

ing the steady-states corresponding to the given 
vector equation. Very helpful tools for this are 
continuation (or path following) programs that 
can trace the dependence of steady states on one 
or more control parameters, see for example [13], 
[14], [15], [I 61. It is usual to couple such algo- 
rithms with simultaneous eigenvalue analysis in 
order to b o w  also the stability of each state iden- 
tified. One step further, it is possible to follow 
also the evolution of bifurcation points, leading 
to the generation of bifurcation diagrams. Trac- 
ing equilibria, such the surf-riding states pre- 
sented in Fig. 1, is the simplest possible applica- 
tion of continuation. The types of bifurcation as- 
sociated with stationary surf-riding are, saddle 
nodes and supercritical Hopf bifurcations. De- 
tails about them are given in [2). To analyse pos- 
sible periodic, quasi-periodic and chaotic re- 
sponses one needs to employ additional tech- 
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Fig. 4: Typical crossing of manifolds for a single 
saddle (homoclinic) on the Poincare'map 
for a 2-d system : (a) before and (b) after 
tangency of inset/ outset 

niques such as Poincare' maps, power spectrum 
analysis, calculation of Lyapounov exponents and 
others, Fig.2, [17], [18]. 

(b) Transient responses 
Transient analysis will tell us what type of 

behaviour a ship will tend to adopt, when pres- 
ently lying at an initial condition determined by 
the vector z, = (u, . v , r, , p, , : .yo . x, . 
u , v , are surge and sway veloclt~es; r, p are 
yaw rate and roll velocity; i$ , y, 6 are angles 
of heel, heading and rudder; x is the position of 
the ship on a considered regular wave measured 
froin a trough; the subscript, indicates the val- 
ues of variables at t = 0. It must be reminded 
here that, knowing the existing stable steady- 
states means only knowing what are the 'candi- 
date' forms of long-term behaviour for the ship. 
Yet this information cannot be of any help to- 
wards predicting where exactly the ship will set- 
tle in response to a change in the setting of some 
control parameter. This can be extracted only by 
locating the insets of any existing saddle points 
(a pair for each saddle) in state- space, [19]. The 
insets define the boundaries of the basins of the 
attracting states. Equally important are also the 
outsets of the saddles that define the direction of 
the flow. The insets and outsets (or invariant 
~rzanijolds) are rather unique objects that tend 



asymptotically towards the saddle as t -> + m or 
- - respectively [for the 2-d system that corre- 
sponds to a simple, second order differential equa- 
tion of a single variable, say y, they are orbits on 
the (j, dyldt) plane, Fig.31. However for a usual 
saddle of index-m (that means only m positive 
eigenvalue-real-parts and all other negative) 'liv- 
ing' in a n-dimensional state-space, the inset 
would constitute a ( n - m ) - dimensional 
hypersurface and the outset a m - dimensional 
one. Even without considering the very intrigu- 
ing phenomena in which the manifolds are often 
engaged (homoclinic tangles generating chaotic 
transients and fractal boundaries, see Fig. 4), 
[19], [2Gl], [21], the difficulties involved in cal- 
culating their deployment in state-space are quite 
obvious. A sensible alternative is to proceed with 
a so-called transient map, that features repetitive 
integration from a "dense-enough" grid of ini- 
tial conditions that span the whole state-space; 
or perhaps with a cell-map which is a refined 
version of the transient map with the addition that, 
one makes sure that the vicinity of any point 
("cell") in state-space is not visited twice. How- 
ever the number of initial conditions that need to 
be considered is overwhelming. An additional 
difficulty is that it is not exactly obvious what is 
the best presentation method. 

In [lo] it was advocated that 2-d intersec- 
tions of state-space near its "interesting areas" 
can provide useful insights, particularly when 
there is no desire for restricting the range of pos- 
sible initial conditions of the ship. Often how- 
ever it is reasonable to assume that the change of 
state that the ship underwent due to a sudden vari- 
ation of some control parameter (ship-based or 
exogenous) was effected upon a nearly steady 
initial motion pattern. Imagine for example a ship 
in steady periodic motion overtaken by follow- 
ing waves and operating 'unconsciously' near to 
the threshold of surf-riding; and then a group of 
steeper waves approaching it from behind ; or 
the propeller rate to be set, for some reason, 
suddenly higher (in a Heav side function 
fashion); or finally, the desired heading to be 
suddenly modified. From a dynamical analysis 
point of view the assumption of steady state for 
the initial motion makes the difference between 
an unmanageable and a manageable problem. 

The steady-states that we are interested 
about are fixed points and limit-cycles. In an 
extended state-control space and under the effect 
of some control parameter variation they will 
appear respectively as lines or as cylindrical sur- 
faces. Both are relatively easily located fiom the 
steady-state analysis that precedes the investiga- 
tion of transients. In [lo] we assumed the initial 

conditions lying on stable equilibria. This was 
done basically for the sake of simplicity and in 
order to make the first demonstration of the 
method easier. Such setup could be physically 
realized only if the ship had been captured in 
surf-riding. Now will be shown how the more 
general problem can be tackled, with the initial 
conditions lying either on stationary or, as is the 
far more usual, on periodic states. 

3. THE MULTIPLE-EFFECT PROBLEM 
ARISING AT THE THRESHOLD OF 
SURF-RIDING 

Let's consider once more a steered ship in 
stable periodic motion, as is overtaken from be- 
hind by sinusoidal waves of significant height. 
As stated earlier, the key assumption of the pro- 
posed approach is that the ship had been operat- 
ing at steady-state at the moment when the se- 
lected control parameter was varied. This can be 
practically interpreted in two possible ways: The 
more obvious possibility is that the ship was in 
steady, overtaking-wave periodic motion. Then, 
the control parameter change could cause: 

(a,) a transition towards another periodic state, 
(a,) turning motion that cannot be checked 

(broaching), 
(a,) capsize, 
(a,) capture in the stationary condition of surf- 

riding. 

The second scenario is that the ship had already 
been in surf-riding. Then the control change could 
potentially lead to: 

(b,) another stable surf-riding state, 
(b,) escape from surf-riding and return to 

periodic motion, 
(b,) escape from surf-riding followed by 

broaching, 
(b,) capsize en route to any of the above three 

destinations. 

In either case, it is quite obvious that we are deal- 
ing with a rather unique for ship studies inulti- 
ple-effect problem, resulting from the considera- 
tion of multi-degree dynamics. The primary ef- 
fects may either be felt in surge (surf-riding), in 
yaw (broaching) or in roll (capsize). The deter- 
mining factor is the initial state and the magni- 
tude of change of the control parameter. 
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Fig. 5 : Organization of the domains of 
periodic,motion, surf-riding and 
broaching. The initial motion type 
was periodic. 
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Fig. 6 : 'The evoluticn of the stationary 
surf-riding states with increasing Fn 

4. PERIODIC INITIAL STATE 

Collsider no\v the ship sailing with 
nonzero encounter frequency and angle, and 
speed that brings it very near to the higher thresh- 
old of surf-riding. It has been pointed out that 
this threshold is basically a classic izon~oclinic 
cot111ection where a limit cycle conlzs nearer and 

locus 
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Fig. 7 : Loci of bifurcation points 

nearer t~ a saddle point in state-space i l ~ i i l  :.;c 
two collide, [2], [22]. A slight further increase of 
wave steepness IS likely to cause the crossing of 
the inset of the saddle of crest, Fig.3, which :trill 
generate in t u ~ n  the usual jux; associaicd with 
surf-riding. Although in a physical ss:s ; this is 
something relatively easy to imagine, a ;. " ' 

and hydrodynanlically feasible ~netllod for n ~ o d -  
elling such change of the wave characteristi.: ; is 
not immediately obvious and this is a inatter that 
is cu~reiltly u~lder il~vestigation. 1-Iowever a quali- 
tativeiy siinilar effect will b~3 In\:oked if the pro- 
peller rate is suddenly stcppcd up and, at this 
stage, it is nluch sinlpler to let the propeller rate 
play the role of the varied control parameter. i-Iere 
one must specify however with what phase, rela- 
tively to the periodic motion, the cha~lgz sf the 
control parameter setting is effected. 

Ideally, one must find out at which poiilt 
of the cycle the distance froin the inset of the sad- 
dle of crest is minimum, Fig. 3. A rigorous math- 
elllatical solution to this problenl will be dis- 
cussed in another publication. Practically speak- 
ing however, it is lcllow~n that it is illore likely to 
be captured in surf-riding if the propeller thl  US^ 
is incren~sed when the ship centre lics in the vi- 
cinity ofthe trough, [2]. Also, as the higher t?u-esh- 
old of surf-riding is approached (in general we 

' shall name as lol.zvr threshold the noillinal speed 
or Froude nuinber at which equilibrium states 
coille into existence; and as lziglze~ tl~reshold the 
eilcou~lter of the l~omoclinic connection), the pe- 
riodic  notion tends to aline itself with the inset 
of :he saddle, Fig 3. In this case the distance inay 
not be very sensitive to the phase. 
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The new method will be demonstrated 
through application to the purse-seiner that has 
been used extensively in our earlier studies ([2], 
[lo]). The first step is to select a range for the 
desired heading, yr, and nominal Froude number, 
Fn ,  and draw a grid on the plane of these two 
parameters. Then the nodes of this grid are con- 
sidered sequentially for simulation : The first 
node is selected and simulation is carried out 
from a reference initial state until the ship settles 
into the steady periodic motion that corresponds 
to its desired heading and nominal Froude 

(a) av= 3, hr = 1, t,= 3 
(b) av= 3, b, = 3, t,= 3 
(c) av= 2, br= 1, t,= 3 

number. Then, as the first trough is encountered, 
the propeller rate is increased leading to a higher 
nominal Froude number. Depending on the out- 
come the node under consideration is stored in 
the file of surf-riding, periodic motion, broach- 
ing or capsize. Then the numerical experiment is 
repeated for the next node until all the nodes have 
been examined. 

The transition that is triggered by the 
change in the nominal Froude number is dynami- 
cally interesting for a number of reasons; not the 
least being that the periodic (overtaking wave) 
and the stationary (surf-riding) responses that 
correspond to the same desired heading have 
considerably different stability characteristics, 
even for the same or almost the same nominal 
Froude numbers. The autopilot gain values that 
guarantee stabilitv for the one cannot necessar- - 
ily do the same f6r the other, [12]. But even if 
the surf-riding point is stable in a steady-state 
sense, still, this cannot guarantee attraction there 
because there exists also the possibility of being 
engaged in turning. 

The type of reference wave considered is 
simple sinusoidal of considerable steepness (the 
results presented in this paper are based on H/A 
= 1/20 , A /L=2.O) where H, A are respectively, 
wave height and length; and L represents the 
ship length. In Fig.5 is shown how the domains 
of broaching, periodic motion and surf-riding are 



arranged on the plane ( y  , Fn), having deliber- 
ately set the metacentric height very high in or- 
der to avoid, at this stage, capsize. The domain 
ofbroaching is very clearly defined. In addition, 
in Fig. 6 we present the Fn-family of steady-state 
curves that are relevant to Fig. 5. We use projec- 
tions on the plane (y,, y)  . The loci of the local 
bifurcation phenomena that would create insta- 
bility for the steady-state responses can be seen 
in Fig. 7. 

5. ESCAPE FROM SUW-RIDING 

Here we consider, in a sense, the reverse 
scenario: The ship is assumed operating with 
nominal speed equal with the wave celerity c. If 
A. /L= 2.0 the corresponding Froude number of 
wave celerity is . 

As usual, g is the acceleration of gravity. For this 
Fn we derive through stationary-states continua- 
tion, with free parameter the desired heading, the 
curve of surf-riding equilibrium states. We store 
in a file those states near to the trough which are 
stable. It is reminded that a critical role in deter- 
mining the length of the stable region in the vi- 
cinity of the trough is played by the autopilot 
gains, [2] : The proportional one defines the lo- 
cation of saddle-nodes; both however the propor- 
tional and differential gains have an effect on 
where the Hopf bifurcations may arise. 

Each state stored in the file is represented 
by the corresponding desired heading in the 
following way: Suppose that the autopilot 
equation is given by : 

where a ,  , a+, br are respectively proportional 
and differentlal gains; and t6 is the inverse time 
constant of the steering engme. At equilibrium 
the heading and rudder rates are zero and therefore 
the above equation reduces to a heading-error 
relation : 

The relation between y and 6 at equilibrium 

requires solution of an algebraic system of equa- 
tions which is done automatically in the continu- 
ation process. Since yrr is uniquely defined from 
the above equation, it can play the role of the 
representative of the equilibrium state. It should 
be remarked that the presence of large gain aw 
will tend to minimize the heading error. Impor- 
tant is also the required rudder angle for achiev- 
ing equilibrium, with small 6 leading to lower 
error. 

Having defined the range of yr to be be- 
tween 0 deg and the largest desired heading 
where stable surf-riding is possible (we have as- 
sumed of course the rudder equally effective to 
port or starboard deflections), a-similar range 
must be specified also for the second control pa- 
rameter, that is the final nominal Froude number. 
This range should be as wide as possible and for 
our current studies that are based on A/L = 2.0 
we adopted the Fn range [O. 164, 0.5641. 

In Figs. 8 (a), (b) and (c) we show the re- 
sults of the investigation for three different pairs 
of autopilot gains. The four types of behaviour, 
surf-riding, periodic motion, broaching and cap- 
size occupy respective domains of the ('I/, , Fn) 
plane. Each one of these domains presents its own 
interesting structure. There is an intrusion of cap- 
size into the broaching domain from larger head- 
ings. The boundary between periodic motion and 
broaching brings to mind a periodically forced 
Duffing-type oscillator, [lo]. 

It is rather clear from Fig. 8 that either of 
the gains can affect considerably the locations of 
the boundaries. Yet, their qualitative character- 
istics do not seem to be seriously affected with 
the exception perhaps of a part of the broaching) 
periodic motion boundary (at low headings) 
which is under further investigation. 

6. CONCLUDING REMARKS 

A method to analyse the global dynamics 
of the transition between periodic motion and 
surf-riding has been put forward. The specific 
structure of the broaching and capsize domains, 
as they appear in the control parameters' plane 
(yr , Fn), has been shown for the first time. The 
proposed method uses the assumption of steady 
initial motion pattern for coping with the multi- 
dimensional character of the problem. On the 
basis of the current results, the method seems to 
provide a simple and effective means for quanti- 
fying the tendency of a ship for broaching. An 
additional advantage is that it can be used at the 
design stage. 

In this paper we have focused on the link 
between surf-riding and broaching, the existence 



of which was established theoretically in a pre- 
vious publication, [2]. A classification of the 
hitherto understood broaching mechanisms is 
discussed in [2] and [22]. 

In general broaching does not necessarily 
need to involve surf-riding. It may also take place 
directly from the overtaking-wave periodic 
motion at relatively higher frequencies of 
encounter. This route seems to require however 
higher wave loadings and it may be more rel- 
evant to vessels of relatively large size since for 
these surf-riding should represent a very low 
probability event. Detailed analysis of the inter- 
esting dynamics underlying the loss of stability 
of the overtaking-wave periodic motions in a lat- 
eral sense is presented in [12]. 
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