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Abstract 

The numerical technique of continuation is often used 
in the exploration of nonlinear dynamical systems. In 
the current paper it is promoted as a more general 
purpose engineering investigation tool that could 
produce direct benefits for a variety of ship design and 
operability studies. Continuation has been tried in 
university environments, for example in aerospace and 
chemical engineering, and in some focused naval 
architecture research. However the industry does not 
seem to be aware of the capabilities offered. Two 
specific themes are selected for demonstrating its 
potential: parametric rolling of a post-panamax 
containership; and controllability of a ropax feny. 
Emphasis is placed on explaining the steps that a non- 
expert should take when implementing this technique 
for a ship-related investigation. 
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Introduction 

In ship design, "performance-based assessments" are 
perceived, by-and-large, as numerical simulation 
studies, ideally complemented by some limited scale 
physical model testing. Whether for reproducing 
specific scenarios or for assessing ship performance in a 
probabilistic sense, use of simulations driven by 
mathematical models is nowadays recognized as a fm 
step towards the future and beyond the prescriptive 
approaches of the past, despite some concern about the 
degree of accuracy of numerical predictions. 
Use of a mathematical model is superficially identified 
as synonymous to simulation. Such an impression, 
purportedly acquired through the "linear theory" 
curricula that have dominated ship dynamics 
engineering courses, is basically deceptive. It is true of 
course that the dynamic behavior of linear harmonically 
excited systems could be completely characterized by 
means of a limited number of simulations. For whatever 

the initial conditions, not more than a single type of 
long-term response could be reached, which after all 
should evolve in proportion to the applied excitation. 
As well known, such a notion may not be extended to 
nonlinear systems: multiplicity of responses and 
dynarnical "interactions" between them; as well as the 
occasional complexity of the response pattern itself, 
entail a much more organized approach to performance 
assessment. There is no assurance that a limited number 
of simulations could capture all sorts of critical system 
behavior. Furthermore, a massive campaign of 
simulations from many different initial conditions is 
self-defeating, as soon as the active dimensions of 
system's state space have been increased in the hope of 
attaining a more reasonable representation of the 
physics. The efficiency of popular probabilistic 
techniques, like the Monte-Carlo method, could be 
enhanced if prior to their application some basic 
understanding of the underlying state-space 
organization of the system had been acquired. 
Circumstances are known where strong nonlinearity 
influences ship motions, suggesting that such a 
discussion is pertinent: As well known, roll restoration 
at large inclinations is determined by geometrical 
nonlinearity. For some ship forms, hydrodynamic 
nonlinearity affects turning motion even in a calm sea. 
Nonlinear pendulum-like surging can be incurred by a 
steep following seaway (Spyrou, 2006). The connection 
of nonlinearity with instability is prevalent and in most 
cases instabilities of seaworthy ships could be 
considered as realizations of erratic behavior under 
extreme conditions. Thus, significant magnitudes of 
excitation, large deparhu-es from desired equilibria and 
modal interactions should constitute their likely setting. 
It is thus argued that, "brute-force" simulation alone is a 
hopeless path in eliciting useful quantitative connections 
between the design or control parameters of a ship with 
her propensity for extreme behavior and instability. Yet, 
little has been achieved towards incorporating new 
advanced tools of analysis surpassing simulation. 
A case is made below for the adoption of the numerical 
technique of continuation (alternatively known also as 
path-following) as a tool of maritime engineering 
analysis (Keller, 1977; Doedel et al., 1997). It is not 



surprising that similar arguments have been heard also 
for the analysis of "industrial-scale" aircraft models 
(MacMillan, 1998). In that field, the use of continuation 
for research purposes spans a period of thirty years 
(Mehra & Carroll, 1980). Continuation schemes have 
been used also in some rail and vehicle dynamics 
research (Schupp, 2006; Catino et al., 2003). In the 
maritime field, earlier implementations targeted initially 
the loci of equilibrium states under 
hydrodynamiclaerodynamic loading (Spyrou, 1990 & 
1996; Falzarano, 1990). However, the recent use of 
continuation for tracing the steady periodic responses of 
a ship and for direct detection of stability boundaries 
expanded the horizons of application and showed some 
promise of implementation by non specialists (Spyrou et 
al., 2007). 
The forthcoming section provides a brief introduction to 
continuation. Then applications are undertaken in two 
directions: Firstly, -for locating the boundary of 
parametric instability of a containership. Secondly, for 
identifying the course keeping and turning potential of a 
ropax ship excited by unidirectional wind. 

About continuation 

Fundamentally, continuation can be applied in order to 
determine how the steady-states of a dynamical system 
evolve as one or more system control parameters are 
varied. Knowledge of "long-term" behavior, specifically 
of the type and arrangement of stable and unstable states 
of the system, is essential for defining an effective 
strategy for performance assessment. Its current caliber 
does not cater for studying transients, although it could 
seriously support this, through the tracing of boundaries 
of domains of attraction and also by identifying the 
critical areas of state-space where a focused simulation 
effort would prove v e b  effective. Thus this focus on 
steady-states should not be interpreted narrowly and 
lead to underestimation of the scope of the approach. 
The technique currently works for stationary and 
periodic states. Unstable solutions could be traced en 
par with stable ones. A key strength of continuation is 
that it can be used also for following bifurcation points 
as selected parameters are varied. These bifurcation loci 
represent, in actual fact, stability boundaries. A basic 
background on nonlinear dynamical systems can be 
obtained for example from the books of Strogatz (1994) 
and Thomson & Stewart (2002). 

A mathematical model brought into the canonical form 
of a system of ordinary differential equations (possibly 
combined with algebraic equations) represents the usual 
input. Mathematical details about the principle of 
continuation for such systems can be found in Spyrou et 
al. (2007). Efforts are noted also towards implementing 
continuation schemes for dynamical systems described 
by partial differential equations (Shroff & Keller, 1993; 
Davidson, 1997). In continuation the length of the 
solution curve is often used as a parameter of the 
numerical scheme in order to pass over bifurcation 
points, where for example, the solution curve might fold 
back or continue in more than one direction. This 

technique is referred to in the literature as 'pseudo-arc- 
length' continuation. An accessible introduction to the 
mathematics involved in popular continuation analysis 
algorithms can be found, for example, in Seydel(1994). 
A few packages currently exist for conducting 
continuation analysis. DsTool (Back et al., 1992) from 
Cornell University for example, is a user friendly 
dynamics investigation tool with some linpited 
continuation capability. It worked initially in U N . .  but 
currently is operational on several platforms. It also 
incorporates a simple GUI (Graphic User Interface) 
capability. The package LOCBZF can perform 
continuation of equilibrium and periodic solutions of 
low-dimensional (below order 10) dynamical systems 
(Khibnik et al., 1993). CONTENT is designed to 
perform simulation, continuation, and normal form 
analysis of dynamical systems (Kuznetsov & Levitin, 
1995-1997). It is able to predict bifurcations of 
equilibria. It operates in UNLY, Windows, Linux and 
other environments. The most computationally 
advanced algorithm until recently was AUTO 86/87 
(Doedel et al., 1997). It can be used for performing 
continuation of equilibrium, periodic and homoclinic 
solutions. Also, it can locate most types of bifurcation 
points. It operates in WZXand it was initially written in 
Fortran. AUTO 2000 is a more recent version written in 
C programming language. Unfortunately, the interface 
is not particularly suitable for a non-specialist and this 
imposes difficulties when analyzing systems showing 
complex behavior. 

The algorithm that will be used in the current study is 
known as MatCont (Dhooge et al., 2003) and it exploits 
MATLAB'S powerful capabilities including its GUZ. Its 
predecessor was the CONTENT algorithm; however the 
model of the dynamical system can now be introduced 
through a more convenient format. The GUI of 
MATLAB allows very effective visualization of the 
evolution of the branches of solutions. The location of 
bifurcation points is also indicated. Possibly emerging 
new branches of stationary or periodic responses may be 
captured from there on. The tool is in fact under 
continuous development and new program functions are 
gradually introduced. 
MatCont is capable to trace equilibria and identify 
associated bifurcations such as saddle-node, pitchfork 
and Hopf points. Once such singular points of the 
system are detected, there is possibility to perform the 
so-called "codimension-2" continuation in order to 
discover bifurcation points that could arise when two 
control parameters of the system are altered 
simultaneously. This does not mean of course that the 
parameters are varied simultaneously in a physical 
sense, but rather that regions of system's parameter 
space are associated with specific types of behavior, 
separated by the obtained continuation curves. 
Characteristic bifurcations that could be identified from 
such a function and yet be relevant to ship motions are: 
cusps where two loci of saddle-nodes coalesce; and 
Bogdanov-Takens when a Hopf curve intersects with a 
curve of saddle-nodes. 
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Either from a Hopf bifurcation point or from a limit 
cycle obtained by simulation, MatCont offers the 
possibility to conduct continuation of limit cycles. For 
this function, the period of oscillation is treated 
internally as a new state variable. The periodicity of 
these steady-state solutions entails the construction of a 
boundary value problem. Continuation of periodic 
responses is likely to reveal for some systems folds of 
the amplitude response curve, flips (period-doublings) 
and Neimark-Sacker bifurcations (transition to toroidal 
type of response). Further codimension-2 bifurcations 
could be detected from there. Continuation of 
homoclinic orbits has recently being introduced in 
MatCont by using HOMCONT (Kuznetsov & Levitin, 
1995-1997) toolbox which was formerly developed in 
AUTO (Doedel et al., 1997). With the HOMCONT 
toolbox, MatCont is able to identify also homoclinic-to- 
saddle-node ("omega-explosion") bifurcation points. 

Parametric rolling 

In this section will be outlined the process of extracting 
directly the boundary of parametric rolling by means of 
numerical continuation. This serves the purpose of 
demonstrating, by means of a simplified example, the 
use of continuation for studying a well-known ship 
stability problem that has received a lot of attention 
recently (see for example Belenky et al. 2003). For a 
practical level introduction on how continuation works, 
one can find some rudimentary examples based on very 
simple differential equations in the user manual of 
MatCont (Dhooge et al. 2003). 
The nature of constituent boundary segments of 
parametric rolling, which from our perspective are loci 
of bifurcations, is illustrated in Fig. 1 (the diagram is 
generic for a ship with initially hardening roll restoring). 
In this diagram, by a is meant the frequency ratio 
44/01; where q is the natural roll frequency and OI, 

is the encounter frequency. Parameter h represents the 
intensity of fluctuation of restoring which, given a hull, 
is function of the wave. 

To demonstrate the potential of the technique we shall 
use at this stage a simple Mathieu-type mathematical 
model of the roll motion of a fictitious post-panamax 
containership, however with a fairly accurate 
representation of the variation of her roll restoring in 
waves. A rendered view of the hull is shown in Fig. 2. 
The nonlinear variation of GZ in waves is approximated 
through Fourier series whose coefficients are functions 
of wave height H (Scanferla, 2006). 

(c) Locus of saddle-node 

Fig. 1: Generic representation of boundary 
lines of principal parametric instability. 

Symbols appear with their usual meaning: 4 , t are 
respectively roll angle and time. AH, B,, are 
coefficients determined from the Fourier analysis of the 
"true" GZ surface in waves, determined from some 
standard ship design software (in our case this was 
Maxsurf). To reduce the number of parameters, wave 
length was fixed equal to 1.5 times the ship length. The 
fitted GZ surface is shown in Fig. 3. 

Fig. 2: Hull of investigated post-panamax vessel. 

Fig. 3: Fourier series approximation of GZ up to 35'. 



The above model is characterized by explicit time- 
dependence that could be removed by introducing the 
so-called "FitzHugh-Nagumo" equations. The incurred 
cost of two extra degrees of freedom is necessary for 
bringing the model in a consistent format for 
introduction into MatCont; yet this is no hindrance for 
the investigation which thereafter proceeds as follows: 
As first step, simulation is performed from some initial 
condition and for a relatively large wave height, 
targeting a response within the domain of principal 
~arametric instabilitv (therefore the value of a is set < .  
around 1.0). Our specific selection in this case was: 
we = 2w,, H = 5m , an initial roll angle go = 0.1 rad and 

initial roll velocity do = 0 radls. 

-0.5 1 
0 100 200 300 400 500 600 700 BOO 900 1000 

t (s) 

Fig. 4: Simulation of parametric rolling performed in 
order to capture a limit-cycle. 

The obtained response appears in Fig. 4. An arbitrary 
point is then selected, belonging on the steady limit- 
cycle whereupon the system has settled after transient 
effects died-out. From there, numerical continuation of 
the roll response amplitude can be performed; fustly to 
the left and then to the right of the captured cycle, using 
as independent variable the wave height. 

The character of the realized evolution of roll amplitude 
is described schematically by the diagram of Fig. 5. In 
this case we have captured the creation of parametric 
oscillations that takes place on boundary (c) of Fig. 1. 
The exact layout of the steady periodic responses 
obtained is shown, in 3-D format, in Fig. 6. Several 
observations are worthy to be made in this instance: 

Fig. 5: Schematic description of evolution of parametric 
oscillations showing also key bifurcations. 

roll angle (rad) 4.5 3 wave height (m) 

Fig. 6: Result of continuation of parametric oscillations as 
captured with MatCont. 

Firstly, the point of generation of parametric oscillations 
has been captured (it is denoted by BP). Secondly it is 
revealed that, once generated somewhere on curve (c) of 
Fig. 1, the response amplitude evolves initially towards 
lower wave heights. Concomitant stability analysis 
confirms that these responses are unstable and they 
revert to stable at a folding of the curve ("saddle-node 
of periodic orbits" or "limit-point of cycles"), denoted 
by LPC1, which plays an important role: LPCl defines 
the lowest wave height that gives rise to parametric 
oscillations. At higher wave heights the stability reverts 
back to unstable at LPC2, where the branch of solutions 
folds back. 
Once identified, bifurcation points may be evolved for 
all frequency ratios. The obtained curves, defined on the 
plane of frequency ratio versus wave height, should 
constitute parts of the boundary of parametric rolling. 
The loci of BP, LPCl and LPC2, captured through 
continuation, are shown collectively in Fig. 7. It is 
confirmed that, BP is evolving along the curves (a) and 
(b) of Fig. 1 while LPCl is evolving along curve (c). In 
other words the locus of BP defines the linear boundary 
of parametric rolling while that of LPCl defines the 
nonlinear one which is often unjustifiably disregarded. 
The evolution of LPC2, and possibly of other 
bikcation points concerning very high waves, 
determine secondary boundaries that lie inside the 
region of parametric rolling and, as a matter of fact, 
may not be of immediate interest in the current work. 

Fig. 7: Stability boundaries of parametric rolling for 
different levels of damping. The locus of LPC2 

is also shown for the original damping. 



Fig. 8: Varying damping ratio for H a m .  

To enable some comparison, similar curves for different 
linear damping values have been superimposed in Fig. 
7. In the diagram was inserted also the locus of LPC2 
with reference to the original damping value. It can be 
observed that an increase in the damping not only 
increases the minimum wave height required for 
initiation of parametric rolling but also shifts the critical 
encounter frequency. 
It is remarked finally that several other parametric 
studies could be performed at this stage, in an 
essentially automated manner. Such an example is 
presented in Fig. 8 where wave height was fixed and 
linear damping was varied. The evolution of the steady 
roll amplitude around principal resonance is shown. 
Another set of interesting curves is obtained from the 
evolution of BP, LPCl and LPC2 when a is set to 1, 
using again the damping as varying parameter (Fig. 9). 

Fig. 9: Effect on the instability boundaries for fixed a=l as 
both damping ratio and wave height are varied. 

Turning and course-keeping 

The strength of continuation may also be illustrated 
through an assessment of the course-keeping and 
turning capability of a ship. We came to appreciate this 
potential as we investigated recently the controllability 
of a ropax feny in strong unidirectional wind (Fig. 10). 
The mathematical model together with some key results 
from this investigation referring to course-keeping, and 
a list of references can be found in Spyrou et al. (2007). 

The mathematical model was a typical modular one 
with 4-degrees-of-fieedom (horizontal plus roll), 
addressing hull reaction, propeller, rudder and wind 
excitations. In particular for the wind module, the 
proposal of Blendermann (1996) was implemented. 

A number of interesting stability problems underlie the 
specification of the limiting environment where a 
desired heading can be maintained and also turning 
maneuvers can be executed in an effective manner. 
Intuitively, one conjectures that given a steady wind 
environment and setting of rudder to a specific angle, 
the ship should in some cases stabilize herself on a 
straight-line course whereas in other cases she should be 
engaged in turning motion even in the long term. Earlier 
work has indicated also the possibility of additional 
types of response, like oscillations around a mean 
heading in head wind, unless effective control of the 
rudder is exercised (Spyrou, 1995). It is argued that 
simulation alone would fall short of offering a clue 
about the nature of phenomena that govern qualitative 
changes of behavior; something however that would be 
critical for characterizing controllability with 
confidence. 

Fig. 10: The investigated ropax. 

a) Capability to maintain the heading 

Given the above problem setup, a possible way to 
proceed for a continuation-based investigation of 
course-keeping is as follows: Let the steady wind 
velocity be set at a relatively high value (e.g. 23 d s ) .  
Selecting as control parameter the rudder angle, the 
locus of equilibrium headings could be automatically 
produced (see Fig. 11). This curve is comprised 
basically of equilibria and their identification through 
MatCont is straightforward. In general, to initiate 
continuation some initial guess of a starting point is 
required, located in the neighborhood of the targeted 
curve. It is recalled that in the investigation of 
parametric rolling this was identified from simulation 
and selection of a point from the long-term part of the 
produced time-series. Here however no real need of 
such a guess existed, because the state representing 
forward motion of the ship with no turning or drifting 
(corresponding to 6=0), lies on this curve. Several 
bifurcation points (basically saddle-nodes (limit points) 
and Hopfs, denoted on the diagram respectively by LP 
and H) were found to arise. As a matter of fact, only 
some parts of this curve correspond to stable condition 
(there is a generic pattern for the changes of stability 
that is seemingly obeyed also by other ship types, see 
Spyrou (1995). 
Let us now turn our attention on LP (or equivalently its 
symmetric LP') which defines the threshold heading 
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relatively to the wind and also the utmost rudder 
deflection where straight-line motion of this ship could 
be sustained, for a certain specification of the wind 
environment. Normally, this point corresponds to a 
nearly beam wind condition and it is worth noting that 
in the past, it had been proposed to base the selection of 
rudder on a requirement of keeping the course in strong 
beam wind (Mikelis, 1991). Continuation can easily 
produce the locus of this point under simultaneous 
variation of rudder angle and wind velocity. The 
outcome, for a range of speeds, is illustrated in Fig. 12. 
The format seems to be suitable for use as operational 
guidance of the Master. It is noticed that the curves tend 
to become vertical at stronger wind, i.e. rudder 
saturation occurs and, given the speed, further 
deflection of rudder proves ineffective beyond a certain 
limit. Influential ship design parameters might also be 
selected for continuation in order to optimize the 
maneuvering characteristics andlor meet specific 
criteria. 

mdder angle (rad) 

5 

the rudder area was picked as control parameter of the 
continuation curve. The maximum wind velocity where 
course-keeping can be sustained in strong beam wind 
seems to be almost proportional to the rudder area. Hull 
parameters could also have been selected for a 
sensitivity analysis of this nature. 
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As noted already, in the head wind range planar 
oscillatory behavior of the ship is possible to emerge 
due to a Hopf bifurcation phenomenon (see Fig. 11). 
These oscillations could be suppressed through suitable 
active control of the rudder. A sufficient combination of 
gain values of an assumed "proportional-differential" 
controller can be determined without difficulty by using 
these gains as the pair of control parameters of a 
"codimension-2" continuation run. Such loci have been 
produced automatically, according to the discussed 
procedure, and they are shown in Fig. 14. Complete 
extinction of the unwanted oscillations is achieved by 
selecting a combination of gains that falls to the right of 
the presented curves. 

0 5 10 15 20 25 30 
wind velocity (mls) 

Fig. 11: Variation of the rudder angle produces the locus Fig. 13: As above, with parameter the area of the rudder. 
of equilibrium headings. 

wind velocity (mls) 

,- 'Stationary1 

proportional gain (llrad) 

Fig. 12: Evolution of LP1 on the plane of rudder angle Fig. 14: LLSufficienty' combinations of gain values for 
and wind velocity, with parameter the speed of annihilating parasitic oscillations in head wind. 
the ship. Wind from stern quartering. Different wind velocities are shown (from Spyrou 

et a1 2007). 

The prospect of tracing the dependence of key b) Turninginwind 
dynamical phenomena upon design parameters by an 
automated procedure is worthy of attention. One simple Another issue of interest is the capability to execute 
example is provided by the diagram of Fig. 13 where effectively turning maneuvers in wind as well as the 



dynamic character of such turns. As well-known, in 
wind, a turn invoked by some constant deflection of the 
rudder does not converge to circular motion. 
Unfortunately, continuation of periodic states cannot be 
performed directly upon the system of ordinary 
differential equations presented in Section 2 because, 
although a pattern of repetition is ultimately obtained 
concerning for example the yaw rate, the variable y that 
represents the heading and appears explicitly in the 
state-vector of our system increases monotonically i.e. it 
is not a periodic function of time. 
In order to overcome this computational barrier, some 
suitable transformation of the variable that represents 
the heading was contrived. Specifically, the following 
pair of dummy variables was introduced: 
a = cosy, b = sin y , simultaneously ensuring of course 

that the condition a2 + b2 = 1 is satisfied. Then the 
kinematic relationship @ = r that appears in the 
mathematical model needs to be substituted by the pair 

d 
a =-(cosy) = - @ s h y  = -rb, b = ra . By means of 

dt 
this transformation it became feasible to cany out for 
the first time continuation of limit sets representing 
turning motion in wind, as the rudder angle was varied. 
To initialize the continuation, a periodic limit set of this 
kind had to be captured for some relatively large rudder 
angle. This was achieved through direct simulation. 
The obtained result is illustrated in Fig. 15 (for 

reference, the diagram was drawn for a nominal speed 
of ship 6.18 m/s and steady unidirectional wind 26 m/s). 
We note that orbits are presented as closed because we 
have opted to plotcos y , that is a, instead of y . It is 
observed that as the rudder angle is decreased below a 
certain critical value, the closed orbit is broken and thus 
the ship should be unable to complete the turn. In fact, 
the run of the continuation algorithm is stopped at that 
point abruptly with a message of bifurcation. Thus the 
broken orbit could be obtained only by simulation (it 
could not be otherwise because this represents, in fact, 
transient response: in a dynamical sense, the ship is 
"left" to seek a nearby steady state and, in this case, 
possibly a steady straight-line motion pattern). The 
considerable distortion of the orbit as the threshold is 
approached should be noted as reminiscent of a 
dynamical interaction phenomenon. 
The above thus substantiate the conjecture made earlier: 
there is a critical rudder angle below which the ship is 
directed to an equilibrium heading, whereas above it, 
the ship is capable to complete her turn. It is remarked 
however that due to system's nonlinearity, this value 
may not coincide necessarily with the maximum rudder 
angle where the straight-line course can be maintained. 
Therefore, continuation helped us to determine 
efficiently the minimal rudder angles required for 
accomplishing turning maneuvers in wind. 

Fig. 15: A 3-D view of the periodic and stationary states as 
rudder angle is varied 

Concluding remarks 

Continuation tools outperform simple numerical 
simulation when the behavior of nonlinear dynamical 
systems is under investigation. Despite the limited 
attention they have received thus far, they are valuable 
for supplying in an automated manner the dependencies 
of ship responses to critical environmental and design 
parameters and for identifying conditions where system 
behavior exhibits qualitative changes of character. 
Simulation would entail a strenuous procedure for 
capturing the relationship between responses and system 
parameters when the system is nonlinear. Usually 
multiple simulations are run, and before each run a new 
value of the independent parameter has to be set. But it 
is well known that nonlinear systems may have more 
than one branch of solutions. In this inefficient and 
time-consuming way it is not certain that all branches of 
solutions and bifurcation points have been identified; 
and if this could be achieved for simple systems, it is 
practically impossible to define the topology of a 
complicated system by such means. Moreover, unstable 
solutions usually play a very important role in dividing 
system's state space into sub-spaces leading to different 
long-term behavior. Thus it is essential to be able to 
locate also branches of unstable states efficiently. 

Continuation allows someone to vary two or more 
parameters simultaneously and thus follow the evolution 
of system's bifurcation points. When continuation is 
used in combination with simulation, the maximum 
potential is gained as the simulation effort can be 
focused on sub-spaces, where complex dynamical 
activity has been predicted through continuation to be 
taking place. Despite the current inability of 
continuation to deal with transients, it could enhance in 
some instances the potential also of probabilistic 
simulations by helping to identify beforehand the 
dynamical structure of the system, so that probabilities 
could be more easily assigned. 



Engineers that work in industry often face a gap in 
terminology and, even if continuation packages had 
reached a degree of  user-friendliness that allowed wider 
adoption (it seems that w e  are quite near to this stage), 
this communication barrier would still need to be  
overcome. It is felt that awareness through education 
about these novel instruments and underlying theory by  
young engineers who enter the profession would be the 
best way for exploiting these advanced capabilities in an 
industrial context. 
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