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ABSTRACT 

Parametric rolling is a phenomenon of instability of a ship's upright state that can be realised in a longitudinal seaway and often 
leads to an oscillatory roll motion with moderate or large amplitude. In recent years it has been brought to the centre of attention 
following an accident and a discussion has been opened about the possibility of the adoption of relevant design criteria. Among 
ship parameters, roll damping has been singled out as the key factor governing the propensity toward this behaviour. This paper 
presents a review of the state of the art covering the various facets of parametric rolling for a deterministic, as well as for a 
probabilistic, environment. Furthermore, some new ideas about the development of practical design criteria are presented, based 
on the interfacing of deterministic transient responses with the probabilistic characteristics of wave groups. 

1. INTRODUCTION 

The problem of parametric rolling behaviour of ships in 
waves has attracted considerable interest recently following the 
accident of a C11-class containership, which has been 
described as the most costly containership casualty in history 
[France et al. 20031. Attention was focussed on the propensity 
of large post-Panamax containerships for parametric rolling in 
"head-seas", the condition where the accident was reported to 
have occurred. However, parametric rolling has been 
traditionally linked with ship operation in following-seas 
where for several ship types it is easier, given a relatively low 
metacentric height, to satisfy one of the key conditions of 
parametric rolling; that is, the period of the waves as 
encountered by the ship to be near to one half of the natural 
roll period. IMO's [l9951 "guidance to the master" (which 
notably refers to following-seas only) contains a 
recommendation for detecting the onset of parametric rolling 
during operation: ship masters are advised to determine the 
wave period through observation, transform it to encounter 
period on the basis of a suitable diagram that takes into account 
speed and heading, and then compare it to the one half of the 
natural roll period (as well as to the natural period itself, for the 
avoidance of "synchronous" rolling). Susceptibility to 
parametric rolling also depends, however, on the degree of 
variation of roll restoring moment between wave crests and 
troughs. The required amplitude of variation is determined 

principally by roll damping, by the wave "groupness" of the 
seaway, and by the run length of the encountered wave groups. 
Roll damping may be singled out as the key design parameter, 
determining the extremity of the environment where 
parametric rolling could be realised. 

Whilst well-known as a phenomenon for at least half a 
century [Grim 1952; Kerwin 1995; Arndt & Roden 1958; 
Pauling & Rosenbersg 19591, no specific design requirements 
referring to parametric rolling have yet found their way into 
the IMO stability regulations. A possible explanation is that, 
while it is often the cause of intensive rolling, it is rarely 
documented to lurk behind a specific capsize accident. Yet, 
the market is becoming gradually conscious of the fact that 
even 'non capsizal' instabilities could be responsible for 
tremendous effects in terms of loss or damage of property and 
business interruption. Furthermore, the large number of 
containers lost overboard every year, according to a source 
between 2,000 and 10,000, represents a serious hazard for 
smaller vessels [Roenbeck 20031. It is indicative of current 
interest that articles about parametric rolling appear often in 
the daily maritime press (e.g. Gray [2001]; Tinslay [2003]). A 
classification society has recently taken the lead, publishing a 
technical guide for the parametric rolling of containerships 
[ABS 20041. 

A review of recent literature leads to the conclusion that, by- 
and-large, the dynamics of parametric rolling are nowadays 
well understood [Blocki 1980; Spyrou 2000 & 2004; Neves 
2002; Bulian et a1 2003; Umeda et a1 2003; Shin et al. 20041. 
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Design aids, ranging between simple analytical formulae and 
complex numerical simulation codes, can be used for ruling 
out, or at least for containing, the probability of displaying 
parametric rolling. Unfortunately, as the process of ship 
design continues to be primarily regulations-led, this wealth of 
knowledge seems to be little utilised by the designers. As a 
matter of fact, some ships like modern post Panamax 
containerships and probably some of the new large passenger 
ships, especially those characterised by a heavily flared bow 
and flat stem with wide transom, may be sailing without 
having examined their tendency to display parametric rolling 
in a longitudinal seaway. Dedicated experiments like those of 
Dalinga et al. [l9981 centred on a typical cruise ship and those 
reported by France et al. [2003] for the C1 1 containership 
seem to substantiate the concern. 

In the present paper the intention is to demonstrate what 
current theories could offer in terms of prediction of parametric 
rolling. Deeper issues, such as the effect of nonlinearities, new 
phenomena due to coupled motions (especially the effect of 
heavelpitch in head seas and the interference of surging in 
following seas) and, last but not least, parametric rolling in a 
probabilistic context are also reviewed. As a resonance 
phenomenon by nature, parametric rolling calls, in the first 
instance, for a "deterministic" treatment where the effect of the 
environment is assumed as basically periodic. But of course, 
none could disregard that the seaway is stochastic. A 
meaningful interfacing of the deterministic and probabilistic 
facets of the problem is very desirable as it is can help to set 
the right level of stringency for the design requirements that 
accrue from the application of the various theories. Yet the 
issue is still scientifically unsettled. A methodology that 
promises to bring these two together within a single assessment 
procedure is also outlined in the paper. 

2. BASIC "DETERMINISTIC" ANALYSIS 

Parametric rolling is a resonance phenomenon manifested 
by the sudden oscillatory growth of roll which develops despite 
the absence of wave excitation in the direction transverse to the 
ship. It is broadly perceived to occur if the ratio of natural roll 
frequency, U,,, to the encounter frequency, we, satisfies the 
following resonance condition 

The above condition defines, in fact, the vertices of the 
instability regions of Mathieu's equation. Basic facts about the 
instability regions of Mathieu systems, as well as their 
mathematical description, can be found in standard mechanics 
textbooks like Nayfeh & Mook [l9791 and Hayashi [1985]. 
Given that we = k(c-U), with k = 2nlA, c = G, where k is 

wave number, c is wave celerity and A is wave length, it is 
possible to convert equation (1) to an expression of Froude 
number. For positive frequencies of encounter this yields the 
following useful expression 

where L is the ship length and Td = To m is the non- 

dimensional natural roll period. With all other factors assumed 
unaffected, if the ship were sailing in an oblique sea the Froude 
number should be divided by cos? (with = 0 corresponding 
to a following sea). This happens when the waves overtake the 
ship and also in all 'head sea' scenarios. A plot of equation (2) 
for a containership is shown in figure 1. The case n = 1 is the 
most likely to be realized and, in general, it dominates the 
attention in the literature. 

Figure 1. Froude numbers that could give rise to exact 
resonance for a containership. (L, = 262.0 m and To = 25.7 S). 

If the ship is prone to large variations of metacentric height 
(GM) from crest to trough, then encounter frequencies that 
depart from the exact resonance condition we = *(2/n)w, 

could still be eligible for producing growth of roll. As a matter 
of fact, it suffices to satisfy equation (1) or (2) only in an 
approximate sense. We shall scale the amplitude of G M  
variation against the average GM of the ship on the wave. In 
order to simplify the analysis the latter could be assumed, in 
the first instance, to be approximately equal to still water GM. 
Of course, strictly speaking there is no need for having the still 
water GM to coincide with the GM at the middle of the wave's 
up-slope or down-slope and, if a detailed calculation of the 
critical GM fluctuation is underway, the average G M  on the 
considered wave should be used for the scaling (which means 
of course that the scale will vary with wave length and 
steepness). Taking things further, there also isn't any need for 
having a harmonic fluctuation of GM from crest to trough even 
if the wave were assumed to be perfectly harmonic. Strictly 
speaking this effect should be periodic and an analysis in 
Fourier.series is likely to show several multiple frequencies in 
the fluctuation of GM. As a matter of fact, a so-called Hill's 
equation would be perhaps more representative. Whilst a 
direct attack on the problem in this spirit is nowadays possible, 
in the present context it would not help us to acquire the 
basic understanding about the phenomenon. Under the 
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assumptions of 'small' and harmonically varying In general, afterp roll cycles the growth is 
- 

), a well-known result from h(=-= 
GM 2 GM pnh px h - -- 

perturbation analysis for the boundary line of the first 
p ) ( P ~ o )  e 2 + e  2 
P- - 

2 
(8) 

(principal) resonance is (see for example Hayashi [1985]) Vo 

where the first equation refers to a21 and the second to a<l. 
The independent parameter a is defined as a = 4w,2/w,2 . TO 

grasp the order of magnitude, an we higher than the frequency 
of exact principal resonance (= 2 wo) by 10%, would entail, 
according to equation (3), h = 0.42. On the other hand, for an 
we 10% lower than 2w0 the required h becomes 0.3471. 

3. RATE OF GROWTH OF ROLL IN THE FIRST REGION 
OF INSTABILITY 

For a "Mathieu system" the unstable motion that 
corresponds to the first region of instability should build up 
according to the following approximate general solution 
[Hayashi 19851 

where p, a, are hnctions of a, h and they are determined from 
the relationships (only first-order terms are kept) 

At a = 1 the coefficient p obtains its maximum value 
bax = -h14 where a = -n/4. We can then determine the 
corresponding growth per roll cycle 

After substitution of the initial conditions q(0)  = Q,,, and 
@(o)= 0 in equation (6), it can be shown that 

C ,  = -c2 =Q,, f i / 2  . Then equation (6) yields (see also figure 

2) 

growth multiplier y 

Figure 2. Growth of roll in the first region, for a single roll 
cycle, as hnction of the parametric amplitude h (no damping). 

4. THE EFFECT OF DAMPING 

Let us consider now a roll model based on Mathieu's 
equation with damping, 

4 + 2 k @ + w i  [l- hcos(wet)k=0 (9) 

k is half the dimensional damping divided by the roll moment 
of inertia including the added moment. The above can be 
transformed into an equivalent Mathieu equation (with no 
"explicit" damping term) by introducing the change of variable 
p) = we-k' 

The effect of damping on the growth of amplitude is easily 
perceived. The combination of equations (8) and (10) yields 
the amplitude after one roll cycle 
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From the exponential term e we extract the well- 
known condition of stability (i.e. no growth) 

4k h .  =- crrl 
0 0  

It is observed that the 'apparent' damping of the system is 
intensified at low frequencies. 

Damping shifts the first region of instability (and in fact also 
all subsequent regions) upwards; i.e. it incurs a stabilising 
effect on the upright state, rendering it insensitive to small or 
moderate amplitude fluctuations of restoring and thus, loosely 
speaking, to waves of small or moderate height, even if these 
arrive with the right tuning. As a matter of fact, proper 
selection of damping can lead to negligible probability of 
encountering critical wave groups (in terms of the combination 
of the amount of height exceeded and frequency tuning). This 
provides the key instrument for eliminating parametric rolling 
through design. 

The boundary line of the region of principal resonance 
obtained, e.g. with the method of harmonic balance, is 

If we set a = 1 we come to an alternative derivation of the 
stability criterion equation (12). Strictly speaking, there should 
be a slight shift of the vertex, from a = 1 to l +  2k2/o,2 if 
damping up to second order were kept; then the lowest point of 
the boundarv curve should also be slinhtlv modified. to 

The growth inside this region may be determined, to first 
approximation, from equation (4). The exponent p indicates 
how deeply we lie inside the instability region; while the phase 
a (ranging from 0 to -n/2) indicates the distance from the sides 
of the boundary ( a  = 0 at the right boundary and a = -n/2 at 
the left boundary). 

In general, the growth of amplitude after p roll cycles at 
exact resonance (a = 1) is 

For the first one or two cycles the growth is first order for k 
(i.e. k influences growth) but second order for h 

A q-fold increase in roll amplitude from some initial angle of 
disturbance should entail, according to equations (14a) and 
(14b), p roll cycles 

Given that, after a few roll cycles the dominant exponential 
term of (15) is the one with positive sign, the above may be 
written fbrther, approximately, as 

2pnk  p x h  
lnq--- +-- 

W0 2 2 

It follows that for a g-fold increase of amplitude the necessary 
number of cycles p should be 

The time t ,  required for this should be p times the natural 
period To 

To demonstrate the usefulness of formula (17), let us think 
in terms of the following tentative criterion: a 10-fold increase 
of roll amplitude should never come about in less than 4 roll 
cycles for a wave with AIL = 1 .O, H/A = 1/20. At principal 

resonance 4 roll cycles mean 8 critical wave encounters (it is 
possible to link this with the probability of encounter of a 
dangerous wave group with these dominant characteristics). 
The above translate into the following relationship for the 
parameters h, k 

Criterion (17) targets transient response. Compared to 
equation (I2), which is a criterion of asymptotic stability, it is 
superior in the sense that it does not suffer from the unrealistic 
assumption of the encounter of a critical wave group with 
infinite run length. The condition of asymptotic stability is 
recovered from equation (17) if we set p-=- at the right hand 
side of (17). The transient response criterion (17) should 
probably be supplemented by a time requirement based on 
equation (18). For example, the 4 roll cycles would take 
25.7 X 4 = 102.8 S. For very low natural frequencies, i.e. 
following seas, the required time becomes excessive. This 
leaves time for reaction (i.e. change of speed or heading) as 
soon as the beginning of the phenomenon is realised. 

5. THE HIGHER REGIONS OF INSTABILITY 

Among all parametric resonances, the principal one requires 
the lowest amplitude h (in general the required amplitude h is 
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proportional to k"" where n is the order of the resonance). 
Although a criterion like equation (12) is stringent, it informs 
about the minimal h required for reaching the region of 
principal resonance (n = 2). In some cases the ship's natural 
frequency is such that the scenario of principal resonance turns 
improbable, whereas the second resonance falls within the 
attainable speed range. 

The perturbation analysis result for the boundary of the 
region of hndamental resonance is [Hayashi 19851 

The third or higher instability regions require long encounter 
periods [we= (2/n) w, < since n = 3 , 4  ...l, i.e. following 
seas and speeds quite near to wave celerity. However, these 
resonances have extremely low probability of occurrence, 
primarily due to the stabilising effect of damping. 

There are several general formulae for predicting, 
approximately, the critical h for any resonance region, with 
damping taken into account. Two of these are Taylor & 
Narendra [l9691 

and Gunderson, Rigas & Van Vleck [l9741 

Equation (22) is free from the assumption of small damping 
that usually limits the applicability of perturbation methods. 

Perhaps the most accurate expression for the minimal h is 
from Tu~yn [l9931 

The above is calculated at a = l for n = 1 while for n n22 it 
should be calculated at 

It turns out that the required h (which is, practically, the 
representative of wave steepness through the "filter" of the 
hull) increases quickly from n = 1 to n = 2. Take for example 
a ship with 5; = Wwo = 0.06. At principal resonance the 
threshold is h = 4 5  = 24% while at the fundamental it 

becomes, according to Turyn's formula, about 45.2%. Later 
resonances require even higher h although the rate of increase 
is lowered. The combination of requirements for high speed 
[see equation (2) and figure l.] and extreme restoring 
fluctuation (which calls for unrealistic wave dimensions), 
render the resonances above n=2 of almost negligible 
probability. 

6. STOCHASTICALLY .VARYING METACENTRIC 
HEIGHT: REVIEW OF STABILITY CRITERIA 

For a section of the Market the occurrence of parametric 
rolling in a realistic sea is rather unfounded (see for example 
Ractliffe [2002]). Nonetheless, since the 70s and the 80s the 
problem has been recognised as important in naval architecture 
and a theoretical basis for the analysis of probabilistic 
parametric rolling has been developed [Price 1974; Vinje 
1975; Skomedal 1982; Muhuri 1980; Roberts 1982; 
Dunwoody 19891. Conceptually, all these approaches 
represent adaptations of theories from the field of stochastic 
differential equations (see for example Caughey & Dienes 
[1962]; Kozin [1969]; Arnold [1973]; Ariaratnam & Tam 
[1979]; Roberts & Spanos [1986]; lbrahim [1986]). In the 
literature of mechanics it is more common to come across 
investigations of systems excited parametrically by white 
noise. However, in a parametric rolling investigation, the 
shape of the spectrum, and especially the "narrow-band" 
characteristic that creates a higher probability of encounter of 
wave groups, should not be neglected. As is well known, even 
for a linear stochastic system one could think of different 
definitions of stability. We may think in terms of convergence 
in probability, convergence in the mean and "almost sure" 
convergence. Hence a variety of criteria are found in the 
literature. Two concepts seem to be the most popular: The so 
called "almost sure" or "sample function" stability which 
implies that, as time tends to infinity, all samples, except for a 
set of measure zero, tend to the stationary solution; and the 
stability of moments. These criteria can take into account the 
damping and some characteristic of the spectrum of the 
fluctuating metacentric height. 

For systems whose evolution is a diffusion Markov process 
the method of stochastic Lyapounov functions is one of the 
possible ways for deriving a criterion of almost sure 
asymptotic stability (see for example Gray [1967]). Assuming 
Gaussian fluctuation of GM with zero mean, Vinje [l9751 
derived the following simple ship stability criterion of 
parametric rolling based on a Lyapounov function V(q)  that, as 
time goes to infinity, tends to 0 with probability 1. 

For a harmonic process with amplitude h ,  the standard 
7 

42 deviation is 0 = h and the above should become 
2 
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2&k 4 k  h c - which falls midway between - of equation (12) 
W0 0 0  

n k  and Taylor & Narendra's - from equation (21), i.e. the 
W0 

criterion may be too stringent. 
By using the extreme properties of quadratic forms, Infante 

[ l  9681 has shown that for a typical parametric system 

a sample time evolution can be expressed as 

where, h ( z )  is the maximum eigenvalue of the matrix 

{ [A + F(~)JB  + B[A + F(~)]  The constant matrix B is 

symmetric positive definite and determines the norm of the 

Rhh (4 = E[h ,  h,+,] 

To ensure that h is negative, the condition is 

The largest Lyapounov exponent does not provide 
information about the rate of convergence or about the stability 
of moments. This could be obtained from the moment 
Lyapounov exponent [Nolan & Namachchivaya 19991 that, 
however, leads to criteria of higher stringency. To determine 
the p-th moment stability we solve for the p-th moment of the 
amplitude response and compute the moment Lyapounov 
exponent defined as 

1 a(p)(v0)= lim-ln E I J ~  (t; v0 ]lP 
t 

process X which is expressed as ,/xT B X  . Assuming that F(t) where E denotes the expectation. As previously, if 
is ergodic, then h(p)(vO)< 0 then ~ l Jv( t ;  vo)J(P - 0 as time tends to infinity 

(condition of p-th moment stability). For our parametric 
limL$' d(r)dr= E[dg)] with probability 1.0 (28) system the above condition produces the following moment 

t 0 stability criterion 

It accrues that it suffices to request the expectation 
E[A(~)]< 0 .  The derived condition is a sharper one compared 

to equation (25) 

2k 
G < -  (29) The condition ensuring negative A(P) is 

W0 

"Almost sure" stability depends on the exponential growth 
rate of the response of the random system. This is critically 
influenced by the sign of the maximum Lyapounov exponent 
which may be regarded as the stochastic analogue of the real 
part of the largest eigenvalue of a linearised system under 
deterministic excitation. 

Here, by 11 )I is meant the norm of the stochastic process X. 

A j-dimensional system should have j Lyapounov exponents at 
most. If the largest one is less than 0, then "almost surely" x(t; 
X,) should tend to 0 as time goes to infinity. The maximum 
Lyapounov exponent may be obtained from the so-called 
"Fustenberg-Khasminski" formula [Namachchivaya & 
Ramakrishnan, 20031 

and the following definitions apply. 

Roberts [l9821 applied to roll stability the method of 
stochastic averaging of Stratonovitch (see Roberts & Spanos 
[l9861 for a review) in order to circumvent the problem of 
dealing with non-white noise parametric excitation. He 
proposed that, since the joint process of roll amplitude and 
phase (A,IY) converges weakly (as the damping goes to zero) to 
a two-dimensional Markov process, (A,IY) is governed by the 
so-called 'Ito equations' (see, for example, Ito [1951]) from 
which a Fokker-Planck-Kolmogorov (FPK) equation is derived 
for the transition probability density of the joint process. 
Especially in the amplitude Ito equation the phase is not 
present and thus A(t) can be treated as a one-dimensional 
Markov process whose transition probability density should 
depend only on A(t). The assumption of the stationary nature 
of A(t) means that the time derivative of the transition 
probability function should be zero. This simplifies the 
calculations resulting in the criterion of Ariaratnam and Tam 
[l9791 for sample function stability, which involves the natural 
frequency, the damping and the spectral density of the 
fluctuating GMprocess at twice the natural frequency 
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The above criterion, which is useful for linear stability (i.e. 
only for the upright state), is identical with criterion (29) based 
on the largest Lyapounov exponent. But, as noted also by 
Bulian et al. [2003], it is not useful for telling the 
characteristics of the ensuing nonlinear response because in the 
expression of roll amplitude the nonlinear stiffness term does 
not partake in the averaging process. Skomedal [l 9821 canied 
out a comparison against model test data of Roberts' 
predictions of the variance of roll amplitude and found that the 
predicted roll variance is overestimated. 

Stability of sample functions is perhaps what interests us 
most. The criteria for the stability of moments are more severe 
in terms of the required minimal damping; by 50% (in terms of 
minimal k) for the first moment and by 100% for the second. 

Dunwoody [l9891 proposed a sample function stability 
criterion on the basis of the observation (already apparent from 
our investigations in previous sections) that the fluctuations of 
G M  produce an effect that works like a reduction of roll 
damping. By requesting that the damping ratio is greater than 
the expectation of this effective damping due to G M ' S  
fluctuation, a criterion of stability can be deduced which is 
identical with equation (12). Assuming that the amplitude h is 
Rayleigh distributed, its expectation is 

7. A UNIFYING APPROACH BASED ON WAVE GROUPS 

It is well known that higher waves tend to arise in groups. 
As the nearly regular characteristics of waves in a group are 
essential for giving rise to resonant motions like parametric 
rolling, there is a meaningful link between the probabilistic 
nature of ocean waves and the deterministic analysis of the 
earlier sections of this paper. The probability of occurrence of 
parametric rolling could be assumed to be equal to the 
probability of encountering a wave group with a suitable run 
length and exceeding the threshold wave height determined 
from the deterministic analysis, given that the frequency falls 
in the critical range. This viewpoint is indeed fundamentally 
different form the conventional one of linear seakeeping 
analysis where the wave field is approached as the 
superposition of regular waves with arbitrary phase and 
energy. Instead, here the extreme wave field is approached as 
a sequence of wave groups [Spyrou 20041. 

Attention to wave groups is not completely new. Assuming 
no correlation between successive wave heights and without 
setting any requirement about the period, Blocki [l9801 
determined the probability of encounter of a dangerous wave 
group by using a Rayleigh probability density function for the 
amplitude, whose integration from a critical level p to infinity 
should produce the probability of exceeding p. The probability 

of encountering a succession of j waves (i.e. a group) having 
this property should be calculated from the well known 
formula (e.g. Goda [l 9761) 

Takaishi et al. [2000] targeted the probability of 
encountering a "high run" of waves and developed an 
operational guidance for shipmasters. His approach was based 
on Longuet-Higgins' [l9841 statistical properties of wave 
groups. The key point was the observation that, in 
following/quartering seas, there is a range of speeds where all 
the energy of the wave field is concentrated within a very 
narrow range of encounter wave frequencies due to the 
Doppler effect. In other words, the encounter spectrum 
becomes very narrow, which increases the probability of 
encounter of a "high run". The well-known relation between 
the encountered wave spectrum S(w,,  p) and the "true" wave 
spectrum is 

where p is the encounter angle and U is ship speed. As a 
resonance mechanism, parametric rolling entails the 
encountered wave frequency to be in some approximate 
relationship with the natural roll frequency. If, at the 
encounter frequencies of energy concentration, this 
approximate relationship holds true, then a very dangerous 
setup for parametric rolling is in place. However, from a 
design point of view the anticipated speed U in a storm is quite 
uncertain and some probability distribution P(U) should be 
assumed instead of a discrete value. 

An improved approach concerning the same problem could 
incorporate theoretical or parametric models for the joint 
distributions of wave parameters because wave height and 
period, successive wave heights, as well as successive wave 
periods of extreme waves are generally correlated. 
Unfortunately, the desirable multivariate distributions are not 
yet available in the literature. For practicality, one has to make 
certain assumptions about the correlation of key parameters in 
a wave group and opt to use available bivariate distributions. 
Bivariate probability density functions of height and period of 
ocean waves have been proposed by a number of investigators, 
(see for example Longuet-Higgins [1975], CavaniC et al. 
[1976], Longuet-Higgins [1983]). The last one of Longuet- 
Higgins is shown below as described by Demirbilek & 
Linwood Vincent [2002] 

where 
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H 
(42) 

envelope RHH which could be calculated as 
H. == 

E (  ), K( ) are complete elliptic integrals of the first and 
second kind, respectively. The correlation parameter K could 
be calculated as follows (see Stansell et al. [2002] for an 
extensive discussion on alternative methods). 

As usual mo, m,, m,, are respectively zeroth, first and second 
moment of the (encountered) wave spectrum, H is the mean 
wave height; and is the mean zero- upcrossing period that is 

calculated from the spectral moments, = 2~ ,/=. It is to 

be noted that the spectral width parameter v, and subsequently 
the distribution, depends only on the first three moments. 

The probability of encounter of a wave with height above 
the critical one H, and with we near to 2134 (say +20%), should 
be calculated from the double integral 

Thereafter, the probability of encountering a wave group 
with these characteristics and, in addition, a run length j, 
should be given by again applying equation (39). Even this 
approach, however, takes into account neither the correlation 
between successive wave periods nor the correlation between 
successive wave heights. 

Distributions of successive wave periods have been 
employed by Myrhaug et al. [2000] for developing a 
probabilistic assessment of beam-sea rolling. Although ideally 
this correlation should be inside a probabilistic assessment of 
parametric rolling, it is less important compared to the 
correlation of successive wave heights because, due to the 
interference of speed, the critical wave period is relatively 
uncertain at the design stage. On the other hand, parametric 
instability becomes possible only if a certain wave height is 
exceeded. As a matter of fact, if a choice has to be made, the 
correlation of wave heights should be higher priority. 

The degree of correlation between successive wave heights 
depends on the sharpness of the spectral peak. For the effect of 
the spectral bandwidth on the distribution of wave height see, 
for example, Kimura [1980], Tayfun [l9831 and Longuet- 
Higgins [1984]. Stansell et al. [2002] found that, as bandwidth 
increases, there is a rather slight reduction in the mean run and 
group length, up to a bandwidth v = 0.6 beyond which they 
become rather insensitive. To obtain a sense of magnitude we 
note that v = 0.425 for a Pierson Moskowitz and v = 0.389 for 
a JONSWAP spectrum). 

According to Tayfun, the sharpness of the spectral peak 
reflects the variability of height between successive waves and 
is best represented by the correlation coefficient of the wave 

where f = w&n (Hz) and S( ) is the encounter spectrum. Goda 
[l9761 has found that, for swells, the correlation coefficient 
RHH is about 0.6 while for wind waves it is only about 0.2. 

Assuming that successive wave heights follow a Rayleigh 
distribution, Kimura [l9801 derived the following bivariate 
probability density function p ( ~ ,  , H , )  for consecutive wave 

heights 

where H,, is the root mean square wave height and I. is the 
modified Bessel function of zeroth order. The probability of 
having two consecutive wave heights above the critical height 
H, will then be 

where pH(H) is the marginal probability density which is 
Rayleigh type 

The assumption of a Markov chain for successive wave 
heights means that the probability of occurrence of a group 
with length j and heights above H,  can be calculated again on 
the basis of equation (39) where this time, however, 
P = P@;+, 2 H , I  H ;  2 H ,  ). To overcome the neglect of wave 

period, the above could be multiplied by a susceptibility factor 
indicating whether the speed range of the ship produces 
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encounter frequencies that overlap with the frequencies of negligible. Hence a representation like equation (49) could be 
principal resonance. taken as the basic generic model. 

With the definitions 

8. RESPONSE FEATURES DUE TO GEOMETRICAL 
NONLINEARITIES 

We shall revert now to the deterministic case, in order to 
consider behaviour away from the vicinity of the upright state. 
As is well known, there is no reason for the parametric growth 
of roll to persist up to infinity and thus lead by necessity to 
capsize. The detuning due to the nonlinear character of the GZ 
curve combined with the increased dissipation due to the mild 
nonlinearity of damping, creates the prospect of realising 
bounded rolling with moderate amplitude. In effect, for a 
typical parametric growth with nonlinear restoring the 
boundary curves of stability discussed earlier represent loci of 
sub-critical and supercritical bifurcations creating, 
respectively, unstable and stable oscillatory behaviour (see for 
example Skalak & Yarymovych [1960], Soliman & Thompson 
[1992]). At a supercritical bifurcation the new type of stable 
behaviour emerges smoothly while at a sub-critical the new 
type comes about with a jump. 

A truly interesting observation is that the instability 
boundary curves determined earlier for the upright state do not 
entirely contain the domain where parametric oscillations are 
realisable. At first sight, in an idealised environment of a 
periodic seaway that is free from other external disturbances, 
the system should find no reason to leave the upright state as 
long as the combination of frequency ratio and parametric 
amplitude corresponds to some point in the region of stability. 
Nonetheless, the emerging stable roll oscillations need not be 
confined inside the "tongues" of the linear system and stable 
oscillations also exist well outside these regions [Scalak & 
Yarymovich 196 1 ; Thompson & Soliman 1993; Francescutto 
& Dessi 20011. Should the stable upright condition be 
sufficiently disturbed, this oscillatory behaviour can be 
incurred in an abrupt way. A well-focused experimental effort 
is required for establishing this theoretical prediction. 

To take these points further, let us consider a Mathieu-type 
roll equation with a nonlinear term 

The constant c3 could be negative, in which case we are 
practically confined to studying the oscillations corresponding 
to the initial part of the GZ(g,) curve which may be of 
"hardening spring" type; or it could be positive in which case 
we may be referring generically to the whole GZ(g,) curve up 
to the angle of vanishing stability. In the last case, the 
vanishing angle is linked to c 3  with the relationship 
v y  = 1 1 6 .  There is no strict justification for assuming c3 to 

be non-time-dependent. If the oscillations were of reasonably 
small amplitude, the product of the 3rd power of the scaled roll 
angle times the amplitude (assumed as small by necessity) of 
the fluctuating part of nonlinear stiffness might be considered 

the above can be written further as 

If we confine ourselves to symmetric-type responses (it 
sounds strange that non-symmetric responses could exist; but 
this is well-known for several parametrically-excited 
mechanical systems), we may write the solution of the above 
as a Fourier series with odd terms only as 

In general, the first term (v = 1) in the series suffices for the 
level of accuracy sought by the present analysis. Substitution 
of the approximate solution g, = A, 'hint + B, 6)cost into 

(57) and assuming that the sine and cosine amplitudes 
A, 6) B, (T), respectively vary slowly in time, yields the 

following two equations. 

3 
--a c3 A, (r) [A:(.) + B: (r)] 

(58) 
4 

2k& 
- -4 (4 

0 0  

At steady state there is no change of amplitude and hence 
we should request 

By expressing AI,BI in terms of the steady roll amplitude 
A = ,/m and phase i?, i.e. A, = Asini?, B, = Acosi?, and 
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following some further algebraic manipulation we arrive at the 
following set 

4k 
sin 2 6  = - (624 

ho0 & 

The right hand side of (62a) is always positive; hence 
0 I 6 I d.2. The right hand side of the lower expression may 
be positive or negative, depending on the sign of the 
coefficient of the nonlinear term c3 and on whether we lie to 
the left or to the right of a = 1. 

The combination of the above produces the following 
explicit formula for the amplitude. 

Setting A 4  we find the curve whereon the oscillations are 
created. It comes as no surprise that this curve is independent 
of the nonlinear coefficient n and it coincides with the 
boundary of linear stability. Also, the term inside the square 
root, as well as the whole expression of A ~ ,  should be non- 
negative. For, say, an initially hardening restoring (c3 < 0) 
these yield 

4k h > -  and a s 1  (64) 
oo J;; 

Essentially, equations (64) define a locus of "saddle-node" 
bifurcations where the response curve is "folded". The 
unstable periodic orbits that emerged at the left boundary of 
the region of instability go through a U-turn and they are 
rendered stable. Equation (64) determines the true boundary of 
periodic response. For a certain level of h, the region with 
oscillations is wider than the one predicted from linear 
analysis. The stability boundary of the principal resonance is 
in fact a bifurcation locus as shown in figure 3. For hardening 
restoring the right part (a>l)  is of super-critical type and the 
left part (a>l)  of sub-critical type. These properties are 
reversed when the restoring is softening. 

For c3 0 ("hardening GZ") the amplitudes are 

Figure. 4 is a bifurcation diagram, i.e. it shows the change of 
steady-state roll response as a control parameter, in this case h, 

is varied. Even without carrying out a formal stability 
analysis, to an experienced eye the stability of the emerging 
steady roll oscillations is quite obvious. On the right boundary 
(higher a )  of the instability region a supercritical bifurcation 
takes place, whereas the boundary at a <  l gives birth to a sub- 
critical one (see also figure 3). 

Figure 3. Boundary of parametric roll: k = 0.015s1, 
W= 0.2448i1 (hardening restoring). 

Figure 4. Amplitude of response for hardening restoring 

Q'" 

The domain of oscillatory behaviour can easiIy be found 
with some manipulation of equation (5 1) 

The combinations of (h,a) that give rise to oscillations of 
predefined A* is shown in figure 5. It is easily proven that the 
descending part of each iso-A* curve corresponds to stable 
rolling and the ascending to unstable rolling. The boundary of 
stable rolling is reconfirmed (thick continuous line). As we 
have multiple coexisting stable responses, the initial conditions 
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and the availability of sufficiently strong external disturbances 
determine whether the ship can stay upright, or should adopt 
the one (desired) or the other (undesired and possibly 
dangerous) way of behaviour. 

In figure 6 is shown the variation of the roll amplitude A for 
c3 = 2.35 as a function of the linear damping and the amplitude 
of parametric forcing. As deduced from expression (63), the 
amplitude A goes with the square root of both the parametric 
forcing and the damping. For small (yet realistic for many 
operating ships) damping, the effect on the response amplitude 
is relatively small. This is perhaps counterintuitive, given that 
damping is the most critical parameter for the. onset of 
parametric rolling in the first place. Whilst the same applies 
for h, the latter should be quite high (well above 4 k l a )  since 
the occurrence of parametric rolling is taken here as a fact. A, 
say, 10% increase of h incurs a considerably larger quantitative 
effect on the amplitude than a 10% reduction of damping. 
Another influential parameter that is linked to ship geometry is 
the coefficient c3 of cubic stiffness: on the basis of (63), c3 is 
inversely proportional to A' (see also figure 7). 

For c3 > 0 (softening GZ) the amplitudes are 

It is noted above that there are two solutions corresponding to 
the stable and unstable part. Their maximum values (for 
"large" a )  are 

However it should not be disregarded that the formula was 
derived for the vicinity of principal resonance and also that if 
the roll amplitude becomes large a more accurate 
representation of restoring is entailed. 

In figure 8 is shown the change of roll amplitude as the 
parametric forcing h is raised, for frequency ratios surrounding 
a = 1. Contours of iso-h on the plane of roll amplitude against 
a are shown in figure 9. 

The bifurcation diagram of figure 8 suggests that, for a less 
than 1.0, the oscillations are stable as they emerge from a 
supercritical bifurcation. To the contrary, for a above 1.0 the 
oscillations are the result of a subcritical bifurcation, hence 
they are initially unstable (dashed line). However, these 
unstable oscillations later revert to stable at saddle-node 
bifurcation points. It is noted that the vanishing angle is 
approached quicker for the higher a (which for a given ship 
could be interpreted as a lower frequency of encounter) and at 
a = 1.2 the required h is more than 1 .O. It should be recalled 

that the critical h for parametric rolling of the discussed 
containership is 4 k l a =  0.245; i.e. the distance is substantial. 

Figure 5. Iso-A curves (from 0.1 to 0.7 rad) fork= 0.015s-l, 
c3 = 2.35 (hardening), m,,= .2448s". 

Figure 6. Steady response as function of k, h 

Figure 7. Effect of damping on the amplitude of periodic 
response with parameter the coefficient of nonlinear stiffness 
("hardening"). 
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Figure 8. Amplitude of response for softening restoring, 
k = 0.015 S-'. 

Figure 9. Contours of iso-h. 

(a) Transient Behaviour 

From the equations of amplitude given earlier and those of 
phase given below, we observe that the amplitude is changed 
indirectly through the variation of the phase 

d 
- A ~  (z)= (z) a h  sin 2Hz)- - 
dz W0 

-=- 
1 3  

diYz) h c o s 2 ~ f r ) -  l + - + -c3 A2 (z) (68b) 
dz 2 a 4 

An approximate expression for transient roll on the basis of 
the perturbation method of Krylov-Bogoliubov can be found in 
Blocki [l 9801. 

(b) Effect of the Fifth Order Term (linitially Hardening, then 
Softening) 

Consider again the roll equation with a fifth-order 
polynomial for restoring which can better take into account the 
detail of the GZ curve up to larger inclinations. 

The pair of equations that in this case have to be 
simultaneously zero become 

4k 
sin 2 6  = - (70) 

hwo& 

We notice that only the lower one has been modified (by the 
underlined term). As expected, the boundary of parametric 
rolling remains unchanged and thus the criterion h = 4k/oo& 
does not depend on the order of the restoring polynomial. The 
amplitude A is obtained from the quadratic equation 

and the explicit expression of A is 

We select a GZ curve (see figure 10) very close to that of 
the post-panamax containership discussed by France et al: 
[2001.]. The selected values for the coefficients c3 and c5 are, 
respectively, -0.14 and 0.25. The amplitudes, as functions of 
the parametric term h, for the frequency ratios examined 
earlier, are shown in figure 11. Several changes of stability are 
taking place on each one of these curves. An interesting 
feature of this diagram is that it shows the behaviour at large 
angles where the fifth order term of the restoring function 
becomes influential. Contrasting figure 11 with figure 4 is 
enlightening in this respect. 

A supplementary criterion based on steady amplitude may 
be introduced: for a steep wave, say with A/L = 1 .o, H / A  = 1/20, 

the max roll amplitude should not exceed, say, 15 deg (the 
same angle is proposed also in the ABS guide of parametric 
roll). From equation (73) is obtained the combination of 
restoring and damping characteristics that guarantee this 
limiting angle is not exceeded 

(c) Nonlinear Damping 

By including a cubic damping term 6 gi3 the equation of 

amplitude (67a) is modified directly; however that of phase is 
not. 

d 4 k L  3 ~ 0 ' )  (74a) 
- A 2  @)= (z) a h sin 2Hz)- - - - 
dz W0 2& 
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Thereafter the steady amplitude should become 

The nonlinear damping coefficient is much smaller than the 
coefficient of the linear. Quantitative assessment of the 
various contributions to the amplitude A suggests that the 
effect of nonlinear damping to the reduction of A is much 
lower than that of the linear. 

(d) Capsize due to Parametric Rolling 

Could there be an imminent danger of capsize if a ship is 
caught in parametric rolling? At a theoretical level this could 
be assessed by identifying the h level where loss of integrity of 
the basins of attraction of the emerging oscillatory roll 
responses is initiated. Relevant formulae are found, for 
example, in Kan [1992], Esparza & Falzarano [l9931 and 
Nayfeh & Balachandran [l9951 based on Melnikov's method. 
However, as the required h for loss of integrity is in general 
quite high (and notably, it is reduced at very low encounter 
frequencies), it seems that the danger of capsize is not high, 
unless the ship suffers from a short stability range combined 
with very significant GZ variations even in moderately steep 
waves. 

/--', 9. COUPLING WITH PITCH AND HEAVE MOTIONS 

In head waves, when the wave length becomes comparable 
to ship length, vertical ship motions often reach their 
maximum. Hence added resistance and loss of speed should be 
expected. The added resistance in regular head waves may be 
predicted by the well-known strip-theory formula of Gerritsma 
& Beukelman [l9721 

Figure 10. The exact (dots) and the polynomial fit (line) of 
the GZ curve. 

0.3 0.4 0.5 0.6 0.7 0.8 
h 

Figure 11. Amplitude of roll oscillation for 51h order restoring, 
assuming time dependence only in the linear term. The 
parameter is a. 

A,, (X) B,, are added mass and damping of a transverse 

section located at x along the ship, U is the ship's speed and 
womp(x) is the amplitude of vertical velocity of the section 
relative to the wave. A coupled model of surge, heave and 
pitch should provide the mean speed for the specific ship-wave 
encounter scenario. Furthermore, pitch and heave should 
modify the instantaneous waterline as well as the location of 
the centre of buoyancy, resulting in an extra modulation of roll 
restoring with the pitch angle q t )  and heave displacement z( t) .  
Therefore, if we intended to stretch out the conventional 
analysis of parametric rolling for application to a head sea 
scenario, the actual speed and restoring modulation should be 
determined in advance. However, a 4-degree coupled model of 
surge, heave, pitch and roll is the best option for a head sea 
scenario, not least because it can cope with a possible transfer 
of energy between the vertical modes and roll. A single roll 
model is limited in its capability to incorporate such a full 
dynamic effect. 

If first order analysis is performed (where heave, pitch and 
wave slope are first order quantities), one could superimpose 
the GZ fluctuation due to pitch and heave to the semi-static 
one. The parametric driver of roll motion from concurrent 
heave and pitch could arise even in still water. Froude had 
observed this. Nearly 50 years ago, Paulling & Rosengerg 
[l9591 showed that a prescribed harmonic heave or pitch 
motion (which in a different context could be assumed to be 
the response to direct wave excitation) acts like parametric 
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excitation for roll. This should affect the predicted critical roll 
damping quantitatively but there should be no qualitative 
change concerning the character of the instability and the 
encounter frequency where it might occur because, in this 
semi-coupled scenario, pitch and heave are unaffected by the 
simultaneous rolling. However, the two other motions through 
second-order stiffness terms influence roll. More specifically, 
for small excursions from the upright condition the restoring 
function could be expressed as the following superposition 

The subscript 0 refers to the "still" waterline. The origin of our 
"right-handed" body-fixed axes is placed at the ship's centre of 
gravity with the x-axis pointing along the ship, y transversely 
and z vertically (positive downwards). We define heave 
displacement as = zwo - zw where z ,  is the vertical distance 

of the (instantaneous) waterline from the origin (therefore 
positive corresponds to extra immersion). Also, let the 
positive pitch angle 6 be by the stern. A key step is to 
determine how the two partial derivatives are influenced by 
hull geometry. Summarizing the investigation of Paulling & 
Rosenberg [1959], these derivatives are expressed as follows. 
The derivative with respect to heave is 

and the one with respect to pitch is 

In the above, A d  is the still waterline and x~ is the 
longitudinal coordinate of the centre of flotation. Also, X,, xb 
are longitudinal coordinates of the furthest points at the stem 
and bow respectively. It is immediately noticed that flare, as 
represented by the derivative dyldz is very important. 
Furthermore, deck submergence in steep waves as well as a 
wide transom should enhance the fluctuation of restoring 
incurred by the heave and pitch motions. 

Several semi-coupled or fully coupled models of heave, 
pitch and roll, for longitudinal waves, have been investigated 
in the past (see, for example, Blocki [1980], Hua [1992], Oh, 
Nayfeh & Mook [1992], Neves [2002]). In principle, the 
mathematical model should account for direct excitations in 
heave and pitch and for the parametric one in roll. Inspection 
of stability of this system leads to taking its linear variational 
vector equation, which is essentially a set of three 2"d-order 
0.d.e. s with time-dependence in the coefficients of damping 
and restoring. For these it is known that additional instabilities 

(and thus "resonances" of the original system) arise for we near 
to sub-multiples of the sum and difference of the natural 
frequencies of the participating modes (see, for example, 
Hsu [1963]; [1965], Neves [2002]), provided that "sufficient" 
parametric amplitudes are present. In our case, given that the 
natural frequencies of heave and pitch are usually higher than 
that of roll, the eligible w e  should be in the vicinity of 

W,. + W; W; + m; W{ - W,. W; - W ;  where -p-- j = l, 2,3, ... 
J 9 J 9 i 9  J 

Assuming that the pitch and heave natural frequencies are 
considerably larger than (e.g. double) the roll natural 
frequency, taking j = 1 should create resonances near the 
fundamental one (resulting from the two subtractions) and two 
lower than the principal (with reference to the frequency axis 
a = / W %  ). Those near the fundamental should not be 

relevant for a head-sea scenario. But the others, which 
correspond to a high frequency of encounter, may not be ruled 
out. With a similar thinking, it is highly unlikely that the j > 1 
resonances can be realised. Neves [2004] suggested recently 
that the linear roll variational equation is, after substitution of 
the linear heave and pitch responses, a Hill- type equation 
rather than a Mathieu one as customarily believed. 

10. EFFECT OF SURGING IN FOLLOWING SEAS 

Very often parametric instability is examined assuming that, 
despite the wave passage, the forward motion of the ship is 
unaffected. This assumption could be off the truth when a ship 
is sailing in steep following waves with a nominal speed that 
falls in the region of the so-called large amplitude surging 
motion. This speed region has been identified by IMO to be 
approximately between (1.4 - 1.8) f i  (in knots). The 
characteristic of this behaviour is the large and asymmetric 
fluctuation of surge velocity. For an observer moving with the 
wave celerity, the ship should appear to be overtaken by the 
wave quickly when its middle is near a trough, but very slowly 
when it lies near a crest (in absolute terms the speed of the ship 
will be highest around the crests and lowest near the troughs). 
As a matter of fact, the assumption that a ship transits from all 
positions of the incident wave with the same speed should be, 
in this case, inappropriate. The solution is to adopt a "position- 
dependent" representation of the fluctuating restoring, instead 
of the ordinary time-dependent one. But such a substitution of 
the time-dependent restoring by a position-dependent one 
means that the equation of surge motion should be considered 
simultaneously; i.e. a coupled model is pertinent [Spyrou 
20001 

(Roll) 
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where m, - X ,  stand respectively for ship mass and surge 

added mass, the functions T, R represent the propeller thrust 
and ship resistance, respectively, X, is surge wave force and 
Ak is wave slope. Given that X = U - C  where c is the wave 
celerity, we essentially have a system of two 0.d.e.s with 
respect to v, X that can be easily solved in the time domain. 

The coupling with surge should alter the layout of the 
instability regions. Indicatively, in figure 12 the theoretical 
instability regions are compared with and without surge 
coupling, taking as a basis a fishing vessel that had been 
known to show tendency for large amplitude surging. This 
vessel was not prone to principal parametric resonance but it 
seemed theoretically possible to display higher parametric 
resonances in a very extreme environment. The effect incurred 
upon the resonance regions is quite obvious. Further 
investigations with other ships should reveal the full potential 
of this effect. 

Figure 12. Layout of parametric instability regions with 
(continuous line) and without (dashed) surge coupling, for a 
fishing vessel. The grey area corresponds to surf-riding (a 
possibility only for the coupled model). Note that the principal 
resonance did not exist for this vessel, i.e. the first shown 
resonance for each scenario corresponds to the fundamental 
one. The higher resonances required excessively large h. 

11. CONCLUDING REMARKS 

According to the review of the field and the new findings 
presented above, it appears that there is currently sufficient 
understanding for developing scientifically sound as well as 
practical design criteria for parametric rolling. ABS's [2004] 
criteria move into this direction, yet their neglect of the 
probabilistic character of the seaway, might lead to 
requirements that are expensive and tough to meet at the 
design stage. As has been proposed here, a criterion that 

combines an assessment of transient roll response with the 
"groupness" characteristic of extreme waves should be more 
practical compared to a classical criterion deduced from the 
condition of asymptotic stability of the upright state of the 
ship, since the latter presupposes a finely tuned critical wave 
group with infinite run length. Another advantage of the 
probabilistic viewpoint is that it could be easily integrated 
within a risk assessment methodology; because the probability 
of parametric rolling becomes equal to the probability of 
encounter of a critical wave group. This could be obtained 
from current theoretical or parametric models of probability 
distributions of wave parameters. Knowledge of the critical 
wave group leads directly to the definition of the least roll 
damping and the tolerable restoring fluctuation. 

Coupled motions should receive more attention. At the 
moment, their quantitative effect on the classical prediction 
formulae for parametric rolling, which are derived from single 
degree-of-freedom models, is still uncertain although the 
available theoretical basis is quite complete. Complex 
numerical codes could prove useful in this direction, provided 
that a "black-box" approach is not followed; i.e. the scope, 
limitations and assumptions of these codes concerning 
parametric rolling phenomena should be comprehended before 
deriving conclusions. 

Lately, a discussion has been initiated about the 
effectiveness of standard seakeeping methods in ascertaining, 
from model experiments or numerical simulations, that a ship 
is safe from parametric rolling [Belenky et al. 20031. In 
particular, the assumption of ergodicity of parametric rolling 
has been questioned and subsequently, the validity of deriving 
conclusions from single temporal averages of roll response 
(especially as these are usually of limited time, e.g 30 mins at 
full scale). It appears that a different approach to this problem 
that could cope with both the nonlinearity that is responsible 
for the observed finite roll oscillations and the fact that the 
wave "groupness" (i.e. time localized non-stationary features 
of the wave field) is the essential instigator of the phenomenon. 
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