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ABSTRACT 

The paper discusses a split-time method to 

estimate the probability of capsizing of naval ships in 

irregular quartering seas. The calculation of the 

probability of capsizing presents a formidable 

mathematical problem as the roll period and mean time 

to capsizing are practically incomparable values, which 

presents the problem of rarity. The split-time method 

attempts to solve the problem of rarity by separating the 

solution domain in two or more parts, each of which can 

be solved separately and efficiently using numerical 

simulations. The solutions are combined through 

upcrossing theory and initial conditions, with a careful 

consideration of the distribution of initial conditions at 

upcrossing.  The use of advanced, physics-based body-

nonlinear numerical simulations allows the method to 

directly evaluate a ship’s changing stability as it moves 

in waves and to consider unconventional as well as 

conventional hull.  The paper also discusses some ideas 

on how the split-time method can be applied to the 

probability of capsizing due to broaching, and reviews a 

study of the ability of potential flow based simulations to 

predict the phenomena of surf-riding and broaching in 

regular waves. 

INTRODUCTION 

Stability failures in stern quartering waves are 

the result of the interaction of a diverse set of forces and 

can be realized through several distinct dynamical 

phenomena. These phenomena include 

 Pure loss of stability (attaining a large roll angle or 

capsizing as the result of decreased stability when the 

ship is situated around wave crest); 

 Parametric roll (dramatic amplification of roll caused 

by a parametric resonance due to the periodic change 

of stability in waves); 

 Broaching after surf-riding (large roll angle or capsize 

caused by an uncontrollable violent turn due to 

directional instability after a ship is caught by a 

wave and surf-rides on its forward slope); 

 Direct broaching (large roll angle or capsizing 

caused by a sudden amplification of yaw motion 

resulting from a fold bifurcation in yaw).  

The principal forces and effects that drive 

these dynamical phenomena are quite diverse: 

 The hydrostatic, Froude-Krylov, diffraction and 

radiation forces associated with the large-amplitude 

wave-body interaction problem drive the change of 

stability in waves, invoke and damp vertical 

motions in waves, generate steady and unsteady 

surging forces that can create a surf-riding 

equilibrium, and contribute to unsteady sway and 

yaw motions. 

 Vortical (lifting) forces on the hull and appendages 

are responsible for the primary lateral plane forces 

and moments that result from unsteady sway and 

yaw, and can provide a significant coupling 

between lateral and vertical plane motions, 

especially roll. 

 Viscous effects provide damping in both the vertical 

and lateral planes, contribute to the surf-riding 

equilibrium through hull drag, and invoke the 

vortices associated with lifting forces. 

 Propulsion (thrust) forces play its part in creating 

the surf-riding equilibrium and influence the 

encounter frequency of waves through forward 

speed. 

 The course keeping autopilot plays a critical role in 

lateral plane restoring forces and moments 

including equilibria associated with broaching. 

 Anti-rolling systems are very important to roll 

motion, especially roll motion associated with direct 

or parametric resonance.  

These are the principal forces and effects that 

need to be considered for the specified dynamical 

phenomena, but they are not complete. The influence 

of water on deck or the interaction of deck and water 



 

once the roll angle is large enough, wind forces, and 

other effects may be important for particular 

applications, but are neglect here for the simple reason of 

keeping physical complexity of the problem under 

control.  Even with this reduced list, the complexity of 

the problem remains formidable as it combines 

randomness of a realistic seaway with dynamical 

nonlinearity coming from large-amplitude motions, 

consideration of which is absolutely necessary for 

dynamic stability applications.  

The realistic modeling of these forces is the key 

to the realistic modeling of the dynamic phenomena, so 

advanced hydrodynamic computation codes are 

necessarily part of solution. However, the necessity of 

using a statistical description of irregular seas practically 

rules out high-fidelity CFD tools or model tests as 

methods for Monte-Carlo simulation due to prohibitive 

cost of calculations or tests. Potential flow based 

hydrodynamics with semi-empirical models of viscous 

and lifting forces remains the only practical option for 

this type of computational problems. However, model 

tests or CFD are necessary to provide ship-specific 

tuning of the semi-empirical models. 

Even with relatively fast potential flow 

hydrodynamic tools, brute-force direct Monte-Carlo 

simulation remains impractical due to the extreme rarity 

of stability failures for a ship in a realistic loading 

condition. On the other hand, the extreme nonlinearity of 

the stiffness rules out conventional statistical 

extrapolation methods.   The combination of nonlinearity 

and rarity presents the main challenge to be addressed. 

The “separation principle” seems to be an 

answer to the challenge. Its main idea is to separate rare 

events from “non-rare” phenomenon that can be handled 

with statistical method. The solution of the non-rare sub-

problem should lead to the probabilistic characteristics of 

the conditions where the rare event may occur. Then 

conditional probability of whether the rare event actually 

occurs can be found separately; this is the rare sub-

problem.  

One good example of the implementation of the 

separation principle is the wave group approach 

(Themelis and Spyrou, 2007) where the complex 

dynamics of a ship is only considered for a relatively 

short series of large waves. These wave groups are 

considered as independent random events, while the 

initial condition at the encounter of a group is evaluated 

from the relatively mild response between groups. Some 

of the probabilistic aspects of this approach are examined 

by Bassler et al. (2010). 

Another implementation of the principle of 

separation is the time-split method originally formulated 

for a piecewise linear model (Belenky 1993) and 

developed further by Paroka et al., (2006). The 

separation here comes in the space of state variables as a 

roll threshold. The non-rare sub-problem focuses on 

developing statistics that allow the evaluation of the rate 

of upcrossing of the threshold. The rare sub-problem  

finds the probability of a large roll angle or capsizing if 

the threshold has been crossed, based on the 

distribution of initial conditions at the instant of 

crossing. The further development of the method has 

included the use of an advanced hydrodynamic code 

for beam seas (Belenky et al. 2008). 

In a certain sense, the Peak-over-Threshold 

(POT) method can be interpreted in terms of the 

separation principle when applied to dynamic stability 

(Campbell and Belenky 2010a). Like the time-split 

method, the non-rare sub-problem is a statistical 

estimation of upcrossing through the threshold. 

However, the rare sub-problem is a statistical 

extrapolation of the peaks exceeding the threshold. The 

method can be applied to simulation and model test, 

but is limited by relatively mild nonlinearity; for ship 

roll, this limit is roughly the angle of maximum of the 

GZ curve. The method can be used along with an 

envelope presentation in order to evaluate the 

probability of stability failure on both sides (Campbell 

and Belenky 2010b). 

This paper is describes the application of split-

time method for a ship in stern-quartering seas, 

focusing on the problem of pure loss of stability and its 

further development into surf-riding and broaching. 

CONCEPT OF THE SPLIT TIME METHOD IN 

QUARTERING SEAS 

In the application of time-split method to 

capsizing in beam seas (Belenky et al. 2008), the 

upcrossing threshold was defined as the angle of 

maximum of the calm-water GZ curve.  The most 

important difference introduced by following and stern 

quartering seas is changing stability, so the threshold 

now becomes a stochastic process as well, see Figure 1.  

 
Figure 1: Split-time in quartering seas 

The upcrossing problem now needs to 

consider the time varying threshold as well as the roll 

motion. It is convenient to introduce a so-called 

“carrier” process representing an instantaneous 
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difference between the roll angle at the maximum of the 

GZ curve and the instantaneous roll angle: 

 0)()()( mm tttx   (1) 

Here (t) is current roll angle, m(t) is the current value 

of the threshold (instantaneous angle of maximum of GZ 

curve can be used in certain circumstances), and m0 is 

the base value for the threshold (maximum of the GZ 

curve in calm water). 

The next step is the calculation of the critical 

roll rate, which is the minimum roll rate at upcrossing 

that will lead to capsizing. The procedure for calculating 

the critical roll rate is illustrated in Figure 2 and consists 

of a series short simulations starting at the threshold roll 

angle with different roll rates. An iterative process is 

used to vary the roll rate by successively finer increments 

in order to find the boundary between capsize and non-

capsize for any given accuracy. 

 
Figure 2: Calculation of critical roll rate 

It is important to note that critical roll rate, like 

the threshold roll angle, is now a stochastic process. As 

the stiffness of the dynamical system is changing, so 

does the critical roll rate.  The critical roll rate 

calculation is now repeated for each time value and must 

consider the change of the roll restoring with time. 

This allows the formulation of the complete 

capsizing conditions: the roll process crosses the 

threshold and the roll rate at this instant exceeds the 

critical roll rate calculated for this time. The formulation 

is identical to that from (Belenky et al. 2008) for beam 

seas, but the roll threshold and critical roll rate are now 

stochastic processes in the case of stern quartering 

waves. This formulation is illustrated in Figure 3 and is 

expressed in the following formula 

  TPTP UCC |exp1)(   (2) 

Here  is upcrossing rate of the carrier process (1) or the 

exceedance rate of the roll angle over the threshold; PC|U 

is the conditional probability of capsizing if the 

upcrossing occurs, which is the probability that the roll 

rate at upcrossing exceeds the critical roll rate: 

  UttPP crUC |)()(|    (3) 

Here )(tcr  is critical roll rate; U is the event of 

upcrossing of the carrier process (1): 
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The upcrossing rate  is than expressed 

through carrier process and its derivative as 
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Figure 3: Definition of capsizing with critical roll rate 

In the same way that it was convenient to 

define the carrier process x(t), it makes sense to 

consider a process of the difference between the 

instantaneous and critical roll rates, which will be y(t) 

 )()()()( tyttt xrd    (6) 

In total, there are three stochastic processes 

that are needed in order to compute the probability of 

capsizing in formula (2-5) as illustrated in Figure 3: 

 The “carrier” process x(t) defined with formula (1) 

 The derivative of the “carrier” process  

 The process of the difference between the critical 

roll rate and the current roll rate y(t) defined with 

equation (6) 

Time histories of all these processes are 

available from simulation data, and their distribution 

can be fitted. As the problem is considered in a 

stationary formulation, the “carrier” and its derivative 

are independent. However, both the “carrier” and its 

derivative may be dependent on the difference process 

y(t). Therefore, the complete probabilistic 

characterization of these processes requires a three-

dimensional joint distribution: 
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As equation (3) is the conditional probability, it 

requires the distribution of the value of the difference 

process y(t) at the instant of upcrossing: 
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Here index “c” refers to values taken at the moment of 

crossing: yc is the value of the difference process y(t) 

taken at the instant of crossing tc while fc is its PDF. 

To solve the rare sub-problem, this PDF needs 

to be found. The problem can be formulated in general 

terms: there are two stationary processes x(t) and y(t). 

They are dependent. At the time instant tc the process x 

upcrosses a given threshold. It is necessary to find the 

distribution of the value of the process y at this instant, 

see Figure 4. 

 
Figure 4: Value of dependent process at upcrossing 

 

DISTRIBUTIONS AT UPCROSSING 

The problem of the distribution of the value of 

one process at an instant of upcrossing of a second 

process was first encountered by one of the authors in 

relation with the application of the piecewise linear 

method for the calculation of the probability of capsizing 

in beam seas (Belenky 1993). That method required a 

value of roll rate when the roll angle crosses the level of 

maximum of the GZ curve. For the case of a piecewise 

linear system, the process of roll angles is normal. As the 

roll rates are independent from roll, an argument was 

made that any positive value of roll rate can be 

encountered at the upcrossing of roll. Therefore, a 

truncated normal distribution was used for the roll rates 

at upcrossing. 

However, while carrying out a self-consistency 

check of the time-split method using the piecewise linear 

system, it was found that the roll rate at upcrossing 

follows a Rayleigh distribution (Belenky et al., 2008). 

The key is that the distribution of the derivative would 

remain the same if sampling was random, but sampling 

at the instant of the upcrossing of the process is not 

random. Further investigation showed that the 

distribution of the derivative of a process at upcrossing 

can be expressed through the following formula: 
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Expression (9) becomes a Rayleigh 

distribution for a normally distributed derivative, which 

is consistent with the observation for the piecewise 

linear system. A brief derivation of (9) is presented in 

Appendix 1 of this paper, while details can be found in 

Appendix 3 of the final version of Belenky, et al., 

(2008). 

The problem with the distribution of the value 

of a dependent process at upcrossing is quite similar in 

nature.  Following a similar derivation,  the distribution 

of the dependent process y(t) while the process x(t) 

upcrosses a threshold a can be expressed as: 
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As above, the index “c” refers to values taken at the 

moment of crossing. A brief version of the derivation is 

included as Appendix 2 of this paper while details can 

be found in Belenky et al. (2009). 

In order to check these derivations, a series of 

statistical tests were carried out. Wave elevations for a 

linear irregular sea corresponding to Sea State 8 

(H
1/3

=11.49m, T0=16.4s) were used as the process for 

upcrossings: 

   

i

iiiW trt cos)(  (11) 

Here ri specifies a set of component wave amplitude 

calculated with Bretschneider spectrum with frequency 

set i and random phase i following a uniform 

distribution from 0 to 2. The dependent process (t) 

is created by applying a phase shift: 
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i
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Where the phase shift is defined as: 
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Here p is a phase shift parameter p = 0.5. The 

derivative of the wave elevation is: 

   

i
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As all three processes are normal, their 

dependence is completely expressed through 

correlation coefficients: 
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1000 records, each of 30 minutes duration, were 

generated for the test. The threshold value was set to 9 m 

and 688 upcrossings were observed. The distribution of 

the derivative at upcrossing is shown in Figure 5, while 

the distribution of the value of dependent process c is 

shown in Figure 6. Chi-square goodness of fit test does 

not reject either formulae (9) or (10). 

 
Figure 5: Distribution of the derivative at upcrossing 

 
Figure 6: Distribution of the dependent process at upcrossing 

 

TEST OF THE CONCEPT 

In order to test the formulation of the time-split 

concept with changing stability in waves, a piecewise 

linear dynamical system with random elements of 

stiffness was used (Belenky et al. 2009).  A brief 

description of the solution is presented blow; details can 

be found in the above reference. In order to retain a 

closed-form solution, only the decreasing part of 

stiffness curve is allowed to change, see Figures 7 and 8. 

 
Figure 7: Piecewise linear stiffness term with time-varying 

decreasing part 

 
Figure 8: Piecewise linear stiffness term with time-varying 

decreasing part as a surface 

The maximum of the GZ curve is assumed to 

be a linear function of heave motions: 

   dd
m

m bdtkt 



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Here kd, bd and d are stiffness parameters and 0 is the 

roll natural frequency. The heave motion is defined by 

the linear differential equation: 

 .)(2 2 tfE    (17) 

Where fE is wave excitation,  is a notional heave 

damping, and  is the natural frequency of heave. 

Formulae (16) and (17) allow the time history of the 

angle of the maximum of the GZ curve to be expressed 

in the form of a Fourier series: 
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Formulae for the amplitude mai and phase . can be 

found in Belenky et al. (2009). 

 Roll is defined with the following differential 

equation with piecewise linear stiffness: 

 ).()(*2 tff E    (19) 

Where fE is wave excitation and  is a roll damping 

coefficient.  The piecewise linear stiffness is expressed 

as: 
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Where k1 is a contact coefficient, while b1(t) is a 

stochastic process which is a deterministic function of 

random angle of maximum m(t). 

The solution of equation (19) between the 

cases of exceedance of the angle of maximum (they are 

assumed to be rare) can be expressed as Fourier series, 

as can the time history of the carrier process (1): 
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Where xai is a component amplitude and xi is the phase. 

The solution of the non-rare sub-problem is 

trivial as the carrier process is normal, so the rate of 

upcrossing is expressed as: 
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Where the variance of the carrier, xV , and its derivative, 

xV , are trivially derived from their Fourier presentations. 

The objective of the rare sub-problem is to find 

the critical roll rate and its probabilistic characteristics. 

The roll equation remains linear after upcrossing: 

 011 )(2 vb ktkk    (23) 

Here v0 is angle vanishing stability – the position of 

unstable equilibrium in calm water and db kkk 1 . Its 

total solution consists of the general solution of the 

homogeneous equation and a particular solution of the 

original heterogeneous equation: 

 )()()( tptt H   (24) 

The solution of the homogeneous equation is 

 )exp()exp()( 21 tBtAtH   (25) 

Here 1,2 are eigenvalues and A and B are arbitrary 

constants. One of eigenvalues 1 is positive, so the sign 

of the arbitrary constant A determines whether capsize 

will occur after this upcrossing. 
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)( ctp  and )( ctp  are the values of the particular solution 

at the instant of upcrossing tc. 

The critical roll rate is the value of the initial 

roll rate )( ct  in formula (26) that turns the arbitrary 

constant to zero; therefore: 

   )()()()( 02 tptptt vmcr
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This allows the difference between the critical 

roll rate and the current roll rate to be expressed through 

the Fourier series: 
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All three of the processes required for the split-time 

concept in quartering seas are now presented in the form 

of Fourier series. All are normal and the dependence 

between these processes is completely described by 

correlation, which can be trivially calculated from 

Fourier series presentation. Substitution of the three-

dimensional normal distribution into formula (10) yields 

the following expression for the distribution of the 

difference between the critical and current roll rates at 

upcrossing: 
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This expression can be plugged into formula 

(8) to get the probability of capsizing after upcrossing. 

In order to verify the self-consistency of these 

results, a series of Monte-Carlo simulations were 

performed for the notional ship with piecewise linear 

stiffness in Sea State 8.  In the first series of 200 

records of 30 minutes each, 70 records end up 

capsizing. Figure 9 compares the theoretical and 

statistical solutions of rare sub-problem. The two 

solutions show good agreement in both the distribution 

of the difference between critical and current roll rate 

and the probability of capsizing after upcrossing. 

 
Figure 9: Distribution of the distance between critical and 

instantaneous roll rate at upcrossing. 

In order to see if the statistical estimate of the 

probability of capsizing converges to the theoretical 

solution (2), two convergence checks were performed 

with independent sets of initial phases. Each check 

consisted of estimating the probability of capsizing on 

an increasing number of 30-minute records from 200 to 

6000.  Figure 10 plots the statistical probability of 

capsize with confidence interval versus the theoretical 

value predicted with the time-split method.  The 

statistical results do not reject the theory and show a 

clear tendency to converge to the result of formula (2). 

Details of the calculation can be found in Belenky et al. 

(2009). 

LAMP IMPLEMENTATION 

While the concept of the time-split method 

has largely been developed using an ordinary 

differential equation for roll with piecewise linear 

stiffness, the goal is to implement the time-split method 

using numerical simulations from advanced time-

domain numerical seakeeping codes.  In the present 

work, the method is being implemented with the 

LAMP (Large Amplitude Motions Program) code.  
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Figure 11 Convergence of the statistical frequency to 

theoretical solution as number of runs increases. Upper (a) and 

lower (b) graphs differ in sets of initial phases 

LAMP is a nonlinear time-domain potential 

flow seakeeping code developed to predict the motions 

and loads of a ship or other marine vehicle in a seaway. 

The core of the LAMP calculation is the solution of the 

wave-body interaction problem in the time domain using 

a 3-D potential flow panel method. The hydrodynamic 

forces are integrated with a variety of models for 

additional effects and systems, including viscous and 

lifting forces for hull and appendages, as well as course 

and motion control systems to provide a comprehensive 

model of a ship operating in a seaway. A key element of 

the LAMP calculation is the 3-D body-nonlinear 

calculation of the incident wave (Froude-Krylov) and 

hydrostatic restoring forces.  These forces are computed 

by integrating the Froude-Krylov and hydrostatic 

pressure of the instantaneous wetted portion of the hull at 

its predicted position and beneath the incident wave at 

each time step. The body-nonlinear hydrostatics has been 

found to be the dominating effect in both nonlinear ship 

wave loads in extreme seas (Weems et al. 1998) and the 

parametric roll of container carriers, and is critical for 

evaluating the roll restoring of unconventional hull forms 

and the variation of roll restoring in waves (Belenky and 

Weems 2008). 

EVALUATION OF THE GZ CURVE IN WAVES 

In order to apply the time-split method for 

quartering seas with a hydrodynamic code, it is necessary 

to evaluate the ship’s instantaneous roll restoring (GZ) 

curve as it moves in waves.  In principle, this evaluation 

is not much different from evaluating the calm water 

GZ curve in the model tank: the ship is rolled through a 

series of incremental heel angles and the restoring 

moment and GZ are calculated for each heel angle.  

The differences are that the GZ curve is computed at 

each time step of the simulation and the heel angles are 

applied as a variation to the predicted instantaneous 

position on the wave. 

Per d’Alembert, any dynamic problem can be 

considered as a static one if inertia forces and moments 

are included, so the instantaneous position of a ship in 

waves can be treated as equilibrium. When the ship is 

heeled relative to this position, this equilibrium is 

disturbed as the submerged part of the hull changes, 

and the forces on the hull change.  If the ship is 

“balanced” on the wave in order to maintain the 

equilibrium in the heave and pitch, then the resulting 

moment in roll represents the “pure” heeling moment 

needed to achieve the incremental heeling angle, and 

can be directly used to construct an effective GZ curve 

in waves.  The approach is similar to the “wave pass” 

evaluation of the GZ curve implemented in some static 

stability programs, but differs in that it considers the 

equilibrium of the predicted ship motion in the 

d’Alembert sense (with inertia forces and moments 

included) rather than a quasi-static equilibrium based 

on the ship mass and center of gravity. 

This calculation of the instantaneous GZ curve 

in waves has been implemented in the LAMP (Large 

Amplitude Motions Program) code as part of its time 

domain ship motions simulation. The procedure is 

fairly straightforward:    

 For each time step of the calculation, the ship is 

heeled through a range of angles relative to its 

predicted position 

 At each heel angle, the forces and moments on the 

ship are computed for the heeled position 

 The ship’s heave position and pitch angle, as 

expressed relative to a global system, are iteratively 

adjusted until the dynamic equilibrium in these 

modes is achieved 

 The net roll moment defines an instantaneous GZ 

value 

 
Figure 12 Applying an incremental heeling angle on the 

ONR Topsides tumblehome hull form in the calculation of 

the GZ curve in waves 

Figure 12 shows how the incremental heeling 

angle is applied to the ship relative to its instantaneous 

position on the wave.  The ship in this case is the 

tumblehome variant of the ONR Topsides hull form 
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series.  Figure 13 shows a set of GZ curves for this ship 

at different times as it runs in regular quartering seas. 

 
Figure 13 Applying an incremental heeling angle on the ONR 

Topsides tumblehome hull form in the calculation of the GZ 

curve in waves 

In the calculation of the forces moments on the 

ship at each heel angle, it is assumed that the inertial 

forces remain constant – this is the equilibrium in the 

d’Alembert sense that is maintained.  The variation in the 

hydrostatic and the incident wave forcing is computed by 

integrating the static and Froude-Krylov pressure over 

the wetted hull surface at this position.  It is assumed that 

the hydrodynamic forces associated with radiation and 

diffraction, remain constant.  While the effect of the heel 

angle on these forces is felt to be small compared the 

hydrostatics and Froude-Krylov forces, this is somewhat 

of an approximation.  However, the hysteresis of the 

wave-body disturbance problem – the fact that the 

disturbance is dependent on how the ship got to its 

position on the wave – makes it impractical to consider 

the roll variation in the calculation of these forces.  The 

change in the forces and moments due to other effects 

such as rudder, bilge-keels and anti-rolling systems can 

be included to some extent, but are typically not 

significant.  

Additional details on the method of calculation, 

its verification and statistical characteristics of the 

elements of the GZ curve in waves can be found in 

Belenky and Weems (2008). 

EVALUATION OF THE THRESHOLD 

Once the GZ curve has been calculated, it is 

necessary to determine the upcrossing threshold angles – 

one positive (rolling to starboard) and one negative 

(rolling to port) – which are needed to calculate the 

carrier process x(t) as defined in formula (1).  Following 

the general derivation of the time-split problem, this 

should be the location of the maximum value of the GZ 

curve.  However, the shape of the GZ curve can vary 

dramatically for a ship moving in large waves, and can 

have times for which it has multiple local maxima or no 

positive restoring at all, as illustrated in Figure 14.  This 

makes the maximum point impractical for this 

application. 

 
Figure 14 GZ curves in waves showing multiple local 

maxima and no maximum on positive side 

In order to implement the split time method in 

a hydrodynamic code like LAMP, it is necessary to 

find a threshold roll angle with the following features: 

It is continuous and differentiable. 

It is representative of the maximum restoring 

arm. 

There is no significant increase in the 

restoring arm beyond the threshold value. 

The last of these features is necessary in order 

to preserve an important aspect of the split time 

method’s separation of the roll problem; namely that 

resonant wave induced motion does not play a 

significant role in the solution of the rare problem. 

For time steps with any positive stability on 

the given side, including the fairly normal GZ curves 

shown in Figure 13 and “double hump” example on the 

left hand side of Figure 14, a suitable threshold angle 

can be found by calculating the centroid of the top 

portion of the area under the GZ curve, as illustrated by 

the schematic in Figure 15. This top area is identified 

by computing a cut-off level which is set so that the 

area above the plane and below the GZ curve is equal 

to: 

  )0(,max3.0 max GZGZGZ VCut   (30) 

Where V is the angle of vanishing stability and GZmax 

is the maximum of the GZ curve, while GZ(0) is the 

value of the GZ curve for zero roll angle. 

 
Figure 15 Calculation of the threshold roll angle as the 

centroid of the area under the top of the GZ curve 

This use of the cut-off plane and area centroid 

has been found to give very stable, reliable, and 

differentiable values of the threshold roll angle for 

many lengthy simulations of the tumblehome hull form 

in large quartering waves.  

Figure 15 show a section of time history of the 

“raw” GZ curve maximum and the threshold value 



 

computed by the area centroid method.  The high 

frequency oscillations in the raw maximum occur when 

the top of the GZ curve is very flat.  The sudden drops 

occur in a multi-hump curve as the humps change 

relative size.  In both cases, the new scheme produces a 

stable, reliable value.  The scheme can even be used for 

cases where the peak is below the axis.  

 
Figure 16 Position of maximum of GZ curve and threshold 

role angle for tumblehome hull at 15 knots in quartering Sea 

State 7 

For time steps with no positive stability or 

negative peak on a given side, such as the right hand side 

example in Figure 14, the threshold value is simply 

interpolated in time between the last and next time step 

for which suitable values could be calculated.  While this 

is a somewhat degenerate solution, it satisfies all of the 

requirements for the threshold value and has worked well 

for the tumblehome cases. 

NON-RARE PROBLEM 

In Belenky et al. (2008), the non-rare problem 

for beam seas was solved by estimating the variance of 

the roll angles and rates, fitting distributions to the data, 

and calculating the upcrossing rate as: 

      


 dff m

0

0  (31) 

However, when this technique was applied to 

the results of a set of LAMP simulation for the ONR 

tumblehome hull in stern quartering seas  (200 records, 

40 min each, sea state 7, speed 15 knots, heading 45 

degrees), the number of observed upcrossings was 

significantly less than expected.  

A special study was performed in order to find 

the reason of this discrepancy.  The upcrossing rate 

through a constant threshold was estimated and 

compared with the prediction (31) using fitted 

distributions of roll angles and rates.  The comparison 

has shown a significant difference between the estimate 

and prediction, as shown in Figure 17. 

The formula (31) uses the assumption of the 

stationarity of the process that results in the 

independence of the process and its first derivative. 

Without this assumption, the upcrossing rate can is 

expressed in terms of a joint distribution as: 

    


 df m

0

0 ,  (32) 

When a joint distribution was fitted for the roll 

angles and rates, formula (32) yielded a result that falls 

within confidence interval of statistical estimate of 

upcrossing rate, as shown in Figure 17.  

 
Figure 17 Observed and predicted rate of upcrossing: 

speed 15 kn 

The result at Figure 17 may look like the roll 

process is not stationary, but there is no physical reason 

for non-stationarity as stationary waves were the only 

external excitation and nothing changes within the 

system.  Therefore, the observed effect cannot be a 

result of real non-stationarity. To see how stable the 

observed effect is, the calculations were repeated for a 

heading of 40 degrees and speed of 14 knots (Figure 

18).  

The results in Figure 18 are very similar to 

those one in Figure 17; the observed effect seems to be 

robust. The effect was not observed when the 

calculations were repeated for zero speed and beam 

seas, as shown Figure 19. This indicates that the effect 

is caused by speed and heading.  

 
Figure 18 Observed and predicted rate of upcrossings: 

speed 14 knots, 40° heading 

The spectrum of the roll response for the 15 

knots case is shown in Figure 20. The curve has a clear 

“bump” in the area of lower frequencies that can be 

attributed to Doppler effect.  In contrast, the spectrum 

for the beam seas (Figure 21) has only one peak. 
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Figure 19 Observed and predicted rate of upcrossings: zero 

speed, beam seas 

 
Figure 20 Spectrum of roll response for 15 kn case (red – 

averaged spectrum, blue averaged and smoothed spectrum) 

 
Figure 21 Spectrum of roll response for zero-speed case. (red – 

averaged spectrum, blue averaged and smoothed spectrum) 

The appearance of low-frequency response 

components in following and stern quartering seas is a 

well-known effect, and is associated with low encounter 

frequency. It is also clear that low frequency components 

may look like non-stationarity; as very long records are 

required to describe low-frequency components properly. 

What is surprising is how large this effect was for the 

upcrossing rate, considering how small the second peak 

of spectrum is in Figure 20. 

It is not clear at this time why this influence is 

so large and what (if any) influence the changing 

stability in waves may have towards this effect. It is 

clear, however, that the effect is strong enough that it 

must be accounted for in the procedure. The use 

extrapolation with peak-over-threshold method for 

estimates of the upcrossing rate may be an option, as 

proposed by Campbell and Belenky (2010a).  

RARE PROBLEM 

The objective of the rare problem is the 

calculation of the probability of capsizing after the 

threshold has been crossed. This random event is 

associated with the exceedance of a critical value by 

current roll rate at the instant of upcrossing, which 

corresponds to a negative value for the difference 

process y(t) defined by formula (6). The probability of 

this event is described by formula (8); while the 

distribution of the difference process y(t) at upcrossing 

is determined by (10). The most challenging part is the 

evaluation of the joint distribution of three processes: 

the carrier, its derivative and the difference process. 

 
Figure 22 Correlation coefficients for 200 realizations speed 

15 knots, heading 45 degrees.  

Among these three processes, two are 

independent due to stationarity: carrier and its 

derivative (provided that the records are long enough 

for low-frequency components).  All other processes, 

in principle, need to be treated as dependent. Figure 22 

shows correlation coefficients calculated for each 

realization of simulations for of 15 knots, 45° heading. 

The ensemble estimate was calculated as an average 

over all realizations. Calculations were carried out for 

roll to both sides. 

These calculations have shown that significant 

correlation exists only between the derivative of the 

carrier and the difference process y(t). It therefore 

make sense to assume independence of the carrier 

process x(t) and the process of difference y(t). This 

allows the problem to be significantly simplified as the 
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joint distribution of the three processes in formula (10) 

can be presented as 

 ),()(),,( dd xfxfxxf    (33) 

Substitution of (33) in (10) leads to: 
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As a result the. distribution of the difference process at 

upcrossing becomes independent on the threshold. 

To use formula (34), the joint distribution of the 

difference process )()( tytd   and the derivative of the 

carrier )(tx  needs to be fitted. To fit this joint 

distribution, it is presented as: 

 )|()(),( ddd xffxf    (35) 

 A Pierson type IV distribution was used to 

present the conditional distribution of the derivative of 

the carrier when the difference between instantaneous 

and critical roll rates took a certain value: 
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The parameters of this Pierson type IV distribution were 

calculated using the method of maximum likelihood. The 

parameter  was considered to be a function of 

difference process; others did not show significant 

variability. A Gram-Charlier distribution was used for 

the marginal distribution of the difference process: 
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Here d and md are the standard deviation and mean 

value of the difference process that are estimated from 

statistics, while Sk and Ex are skewness and excess 

kurtosis that are evaluated with the maximum likelihood 

method. The result is a fitted joint distribution as shown 

in Figure 23. 

The next step is to fit the marginal distribution 

of the derivative of the carrier (Gram-Charlier 

distribution is used) and then apply formula (34). The 

resulting distribution of the value of the difference 

process at the upcrossing is shown in Figure 24. 

 
Figure 23 Fitted joint distribution of the difference process  

and the derivative of the carrier  

 
Figure 24 Distributions of the difference process and its 

value at the instant of the upcrossing of the carrier 

The last step is the application of formula (8). 

This procedure, however, may be vulnerable to a type 

of numeric error, similar to the one found for non-rare 

problem. Similar to the non-rare problem, statistical 

extrapolation may be considered as an alternative, 

which is an item for future work. 

NUMERICAL MODELING OF BROACHING 

AND SURF-RIDING 

Stability failure due to broaching involves a 

violent uncontrollable turn in waves that could be 

result of either a directional instability of the surf-

riding equilibria or a fold bifurcation of yaw motion. 

Both these mechanism of broaching are related with 

maneuvering in waves. The key lateral plane 

maneuvering forces on the hull and a rudder are 

vertical or viscous in nature and cannot be modeled 

natively within a potential hydrodynamic code like 

LAMP, so supplemental maneuvering force models are 

required. The implementation of such models must be 

done carefully in order to avoid double counting with 

wave-body hydrodynamics and seakeeping force 

models, and to maintain the applicability of such 

models, which are typically develop from 3 or 4-DOF 

tests in calm water, to 6-DOF simulations in waves. 

The LAMP system has implemented a set of 

component (e.g. rudder, propeller) models plus 
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standard maneuvering force-derivative models that can 

be tuned to data from captive model test or high-fidelity 

CFD simulations. The use of these tuned force models 

has resulted in good predictions of ship maneuvering in 

both calm water and waves (Yen, et al. 2010). 

In addition the validation of maneuvering in 

waves, studies have been to verify LAMP’s ability to 

predict the principle dynamic phenomena associated with 

broaching and capsizing due to broaching; some of these 

are reviewed below.  First, it is ability to reproduce large 

heel angle (up to capsize) caused by a sharp turn. Figure 

25 shows LAMP-predicted time histories of roll for the 

ONR tumblehome hull with two GM values after a 30° 

rudder application while sailing 38 knots in calm water.  

At the higher GM value, the ship attains a large heel 

angle before recovering.   At the lower value, it capsizes. 

 
Figure 25 Large heel angle and capsizing due to sharp turn in 

calm water 

Surf-riding is a dynamical equilibrium created 

(at least) by thrust, resistance and wave forces. It comes 

into existence when the speed is high enough and the 

wave is large enough that wave forces are able to 

accelerate the ship to wave celerity. The whole picture is 

shown in Figure 26.  

As can be seen from Figure 26, there is only 

surging when the nominal Froude number is below the 

first critical value Fncr1. Once this value is exceeded, 

wave forces added to thrust can accelerate a ship up to 

the wave celerity. At this range of speeds, surf-riding and 

unsteady surging co-exist, and can result from different 

sets of initial conditions. Once the second critical value 

of nominal Froude number Fncr1 is exceeded, surging 

seizes to exist and surf-riding remains the only option 

(Spyrou 1996). 

Spyrou et al. (2009) studied patterns of behavior 

of ONR Topsides series tumblehome hull using LAMP. 

Figure 27 shows time histories from one of the cases 

when surging and surf-riding co-exist and the type of the 

response should depend only on initial conditions. The 

results of LAMP simulations reproduced this expected 

behavior precisely. 

 
Figure 26 Surging and surf-riding 

 
Figure 27 LAMP modeling of coexistence of surging and 

surf-riding. 

Another dynamical mechanism of broaching 

is related to a fold bifurcation in yaw motions (Spyrou 

1997). This phenomenon strongly depends on control 

setting and can be observed as a sudden amplification 

of yaw motions. Figure 28 shows a theoretical yaw 

response curve, where the requested course angle r is 

used as a control parameter. There is a range of the 

requested course angle where three yaw responses 

exist: two stable and one unstable between them. The 

theory also predicts that the yaw responses will be 

subharmonic for some values of the course angle. 

 
Figure 28 Fold bifurcation in yaw motions 

Figure 29 shows yaw motion time histories 

from three LAMP simulations for the same wave 

conditions with different requested course angles.  All 

three time histories show subharmonic yaw.  Figure 

29a shows large-amplitude stable subharmonic yaw for 

a course angle of 14°, while Figure 29c shows small-

amplitude stable sub-harmonic yaw for course of 10°. 

The response for an intermediate value for the course 

angle (12°) is shown in Figure 29b. The yaw motion 
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starts with small amplitude and then “jumps” to the 

large-amplitude mode. This is a typical picture of fold 

bifurcation, demonstrating the ability of advance 

potential codes to model this type of nonlinear behavior 

in the lateral plane. 

 
Figure 29 Time histories showing fold bifurcation and 

subharmonic yaw 

The principal mechanisms of broaching are 

governed by nonlinear dynamics. The continuation 

method has become one of the most powerful tools to 

study the behavior of nonlinear systems, and will play a 

major role in the application of the split time method to 

surf-riding and broaching. However, continuation 

techniques were developed for dynamical systems 

described by a system of ordinary differential equations, 

and the application of continuation with advanced 

hydrodynamic codes presents many challenges, mostly 

caused by hydrodynamic hysteresis (memory effect).  

Nevertheless, the first use of continuation 

method (DERPAR) with a potential flow code (LAMP) 

has been described by Spyrou et al. (2009). To avoid 

excessive complexity associated with the memory effect, 

the diffraction and radiation forces have been 

approximate with constant added mass and damping 

coefficient.   

As an example of the continuation method, the 

position of the surf-riding equilibrium for uncontrolled 

ONR Topsides tumblehome hull in following seas was 

evaluated, using rudder angle as a control parameter. 

Figure 30 shows this curve calculated with 

“conventional” dynamical system described with 

ordinary differential equations (Spyrou 1996). 

 
Figure 30 Course angle corresponding to surf-riding 

equilibria for different rudder angles (Spyrou 1996) 

Figure 31 shows the same type of curve 

calculated using the LAMP implementation of the 

continuation method. Following the approach 

described in (Spyrou 1996), the stability of regions of 

the equilibrium curve was analyzed by examining the 

eigenvalues. The inset plots the eigenvalues in complex 

plane for a point on the curve at which the Hopf 

bifurcation can be expected.  

 
Figure 31 Course angle corresponding to surf-riding 

equilibria calculation with and DERPAR and LAMP 

The eigenvalues are complex with positive 

real part, which indicates “negative damping” in 

oscillatory type of motion. This is exactly what could 

be expected for Hopf bifurcation as surge start to 

oscillate with increased amplitude until it stabilizes. 

The numerical simulation at these conditions revealed 

oscillatory surf-riding, see Figure 32.  

 
Figure 32 Simulated oscillatory surf-riding – manifestation 

of Hopf bifurcation. 
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The ability of an advance potential flow 

hydrodynamic code to model these non-trivial nonlinear 

effects may serve as an indication of its qualitative 

validity. The feasibility of using continuation methods 

even with a simplified hydrodynamic mode gives a hope 

that the rich apparatus of Nonlinear Dynamics may be 

applied for analyzing large-amplitude ship motions 

simulated these codes. 

CONCLUSIONS  

The paper considered several aspects related to 

the extension of the time-split method to the evaluation 

of the probability of capsizing in stern quartering seas.  

The main advantage of the time-split method is its ability 

to use advanced hydrodynamic codes for the evaluation 

of the probability of extremely rare events. The present 

work focuses on its application to the problems of pure 

loss of stability and broaching.  

The key aspect of the method’s application to 

pure loss of stability is the consideration of the change of 

stability in waves. This is done by considering the 

threshold roll angle corresponding to the maximum of 

the GZ curve and the critical roll rate leading to 

capsizing as stochastic processes. 

The feasibility of this concept was demonstrated 

by considering the probability of capsizing of a 

dynamical system with random piecewise linear 

stiffness.  A special formulation of the random piecewise 

linear stiffness facilitated a closed form solution. This 

solution vas verified by a comparison with direct Monte-

Carlo simulation and demonstrated convergence. 

The application of the time-split method with a 

code required a method of calculation of instantaneous 

GZ curve in waves. It was demonstrated that low 

frequency roll response caused by the Doppler effect 

may have a significant influence on the rate of 

upcrossing. As a result, statistical extrapolation may be a 

method of choice for the non-rare problem: upcrossing 

through the threshold. The rare problem – the probability 

of capsizing after upcrossing – may be solved by fitting a 

joint distribution for the difference between the critical 

and instantaneous roll rate and the derivative of the 

distance from current roll angle and the threshold.  

Statistical extrapolation options also may be considered 

for rare problem. 

The application of the time-split method for 

surf-riding and broaching first requires a demonstration 

of the ability of potential flow code to reproduce surf-

riding and broaching in regular wave.  It has been shown 

that LAMP is capable to simulate several related 

phenomena qualitatively correctly. These phenomena 

include roll and capsizing due to sharp turn, coexistence 

of surf-riding and surging as well and broaching as a 

result of fold bifurcation in yaw.  It was also shown 

feasibility of using continuation method with a simplified 

formulation of LAMP. The results obtained with the 

continuation method demonstrate it as a useful way to 

understand physic behind observed phenomena, 

including oscillatory surf-riding due to Hopf 

bifurcation. The ability of LAMP reproduce results 

known from previous theoretical research allows it to 

be the main hydrodynamic “vehicle” for the 

implementation of time-split method for broaching. 
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APPENDIX 1 DISTRIBUTION OF DERIVATIVE 

AT UPCROSSING 

Consider a random event U in which the stationary 

differentiable process x upcrossed level a during an 

infinitesimally small time period following the instant t: 

 adttxatxU  )()(  (A1.1) 

Consider a random event V in which the 

derivative )(tx  at an arbitrary instant of time t is positive, 

but is not larger than a positive value v. 

 0)()(  txvtxV   (A1.2) 

The probability that upcrossing occurs at an 

arbitrary instant of time with the derivative not 

exceeding a positive value v can then be expressed as: 

 )()|()( UPUVPVUP   (A1.3) 

Here, P(V|U) is the conditional probability that the 

derivative will not exceed the arbitrary value v if 

upcrossing occurs: 
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The intersection of the events U and V can be presented 

as a system of inequalities combining (A3.1) and (A1.2).  
































vtx

dttxatx

atx

vtx

adttx

atx

VU

)(

)()(

)(

)(

)(

)(







 (A1.5) 

The probability that the events U and V will 

intersect can then be expressed as: 

  




v a

dtxa

xdxdxfxfVUP

0

)()()(



  (A1.6) 

Taking into account that the limits of the inner integral 

differ only by an infinitely small value dtx , 

 

v

xdxfxdtafVUP

0

)()()(   (A1.7) 

The derivation of the probability of upcrossing at an 

arbitrary instant of time is trivial, can be found in many 

sources, and can be done similarly to equation (A1.5) 

and (A1.7), just without the condition vtx )( .  
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

0

)()()( xdxfxdtafUP   (A1.8) 

Finally, the cumulative distribution of the value of the 

derivative at upcrossing can be expressed as: 
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Note that the final distribution does not depend on the 

level a or on the distribution of the process itself. The 

distribution density can be expressed as: 
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This is a useful formula for the distribution of the 

derivative at upcrossing for any distribution of the 

process and its derivative. 

 

APPENDIX 2 DISTRIBUTION OF DEPENDENT 

PROCESS AT UPCROSSING\ 

Consider a stationary stochastic process, x(t), 

that crosses a level a at an arbitrary instant of time t. 

Consider another stochastic process, y(t), that depends 

on the process x(t). The objective is to find the 

probability density distribution of the instantaneous 

value of the process y(t) when the process x(t) up-

crosses the level a. 

A random event of upcrossing is defined as: 
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By definition, the cumulative probability 

distribution is: 

 .)|()( UbyPyFcr   (A2.2) 

The conditional probability in formula (A2.2) 

can be expressed as: 

 .
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UP
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  (A2.3) 

Here )( UbyP   is the probability of occurrence of an 

upcrossing with the value of the process y(t) not 

exceeding an arbitrary number b.  This random event can 

be expressed through the following system of 

inequalities: 
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The probability of the random event defined by 

equation (A2.4) can be expressed trivially through a joint 

distribution of the process x(t), its derivative and the 

process y(t): 
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The most internal integral in the formula 

(A2.5) has limits that are infinitely close to each other. 

Application of the Integral Mean Value Theorem 

yields: 
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The probability of upcrossing P(U) can be 

expressed in similar way: 

 xdxfxafdtUP 
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)()()( . (A2.7) 

The cumulative distribution of the value of 

y(t) at upcrossing can be expressed by substituting 

(A2.6) and (A2.7) into (A2.3) and (A2.2): 
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The probability density function is obtained 

from (A2.8) by taking a derivative with respect to y: 

 

 

 


