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Summary 
 

This paper outlines a new concept for probabilistic intact ship stability assessment that bridges the 
deterministic and probabilistic approaches. In the paper is discussed in detail the method of calculation of the 
probability of instability. Furthermore, a new mathematical model in heave, sway and roll is introduced for 
numerical investigations of ship stability in beam seas.    

1.  Introduction 

The intact stability of ships has returned to the 
forefront of research, as it seems that the time is 
ripe for establishing international regulations 
addressing explicitly and rationally the various 
modes of ship instability. Whilst the moderate step 
of ‘polishing’ the weather criterion is the one 
currently preferred by Administrations, the true 
challenge that lies ahead is the development of 
criteria that truly reflect the state-of-the-art in 
modelling and assessment of ship stability, that has 
progressed a long way beyond that of 1950. Toward 
this end, a new scientific basis is entailed that 
exploits the strengths of the finest modern 
approaches:  

o Few could doubt that, solid understanding of 
the mechanics of the various modes of 
instability is a prerequisite for a sound approach. 
This could come through nonlinear dynamics 
analyses. Nonetheless this is still performed in a 
primarily deterministic context since the fully 
probabilistic appears to be premature (Spyrou 
& Thompson 2000). 'Threshold’ relationships in 
closed form between key parameters can be 
produced in certain cases (Thompson 1997; 
Spyrou et al 2002). 

o To alleviate our difficulty for a ‘fully blown’ 
and practical probabilistic analysis of nonlinear 
ship motions, a meaningful interfacing of 
deterministic and probabilistic viewpoints 

should be established, exploiting advances in 
wave statistics and wave modelling (Myrhaug 
et al 2000; Stansell et al. 2002; Wist et al 2004; 
Spyrou 2005).  

o It is desirable safety levels to reflect, 
quantitatively, levels of risk.  

o Up-to-date mathematical models with sufficient 
detail and interactions should be used, to an 
extent that allows effective integration.  

 
A concept for stability assessment that evolves 
along the above lines is proposed. It shall be 
explained below through a number of steps:    
 
2. Description of proposed concept for stability 

assessment 
 
2.1 Type of assessment. 

An assessment could be “short” or “long-term”, 
depending on the time of exposure to the 
environment. A short-term assessment could be 
aimed at specifying the level of risk associated with 
a single trip. Thus, it could be an instrument in a 
system of departure control like the one applied in 
Greece for passenger ships (Spyrou et al. 2004), or 
internally within a ship management company. Also, 
it could be combined with an operational guidance 
and a system of weather routeing. Long-term 
assessment, on the other hand, supplies key data for 
design. For practical purposes it could refer to one 
year’s period; yet the probability of capsize should 
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be calculated for a vessel’s lifetime. Short and 
long-term assessments need to be consistent with 
each other. 
 
2.2 Type of service. 
For long-term assessment in particular, the service 
profile could be restricted, unrestricted, or 
combined. Restricted service means to examine 
only specific routes, for example a set of routes of a 
ferry in the Mediterranean. On the contrary, the 
unrestricted service sets no limits in the 
geographical area, and would be representative, e.g. 
of tramp shipping. A grid of spectra covering the 
geographical area as well as their seasonal variation 
at each node will be required. 

Warning mode Failure mode 

Exceedance of 150 
of rolling Growth of roll 

amplitude to 
150 within four 
encounter 
wave cycles 

Norm for cargo Norm for ship 

Exceedance of 
acceleration 
endangering 
container’s lashing 
strength at the 
top-forward 
position of the 
ship 

Ship “capsize”: 
exceedance of a 
limiting roll 
angle (e.g. in the 
spirit of the 
weather 
criterion)

Modes of unstable behaviour for a containership 

Figure 1: Tentative safety levels for a containership.  
2.3 Portfolio of stability criteria. 

Different ship types are prone to different modes of 
unstable behaviour. As a matter of fact the criteria 
should be ship-type specific. 

Tendency for parametric rolling should be one of 
the assessment criteria, as also pure - loss of 
stability on a wave crest in following seas. 

Resonant rolling in extreme beam wind/waves is 
more relevant for smaller vessels. The same applies 
for breaking waves from abeam that may lead to 
dangerous impact loads.  

Broaching, including the so-called cumulative type 
should be examined for all ships. 

2.4 Norms of unsafe behaviour. 
We envisage the setting of warning and failure 
levels per criterion and ship type, determined by 
threshold angular and linear displacements and 
accelerations, referring respectively to the safety of 
the cargo and the ship. Exceedance of the warning 
level could be permissible with controlled 
probability; whereas the failure level should never 
be exceeded for the acceptable level of risk.  The 
setting of warning level per criterion should play a 
cautionary role. In Fig. 1 is shown an example of 
possible norms for a containership.  
 
2.5 Bridging the deterministic and probabilistic 

‘worlds’.  

The probability of occurrence of a certain instability 
could be assumed as equal to the probability of 
encounter of the critical (or worse) wave group that 
generates this instability. Observing the criteria 
mentioned earlier, one notes that they correspond 
either to manifestations of resonant behaviour 

(which entails some regularity in the excitation), or 
to the encounter of a single critical wave. Therefore, 
on might dare to “break” the problem into two 
parts: one deterministic for deducing the 
specification of the critical wave group (meaning 
the height, period and run length) focused purely on 
ship motion dynamics; and one probabilistic 
centred on sea wave statistics for determining the 
probability of encounter of such a wave group.  

Considering the deterministic part, it is essential to 
recognize that the character of the wave group that 
leads to exceedance of the norm of some criterion x 
could be found with more than one methods: A 
popular option is through numerical simulation. 
However several runs (and even runs on more than 
one codes) should be performed to count for effects 
of initial conditions etc. For an up-to-date review of 
existing numerical codes see the report of ITTC 
(2005). A second alternative is to apply analytical 
techniques to capture the key system dynamics.  
For example, it is feasible to seek analytical 
expressions for the growth of resonant roll in beam 
or in longitudinal seas (Spyrou, 2005) or to apply 
global stability analysis methods like Melnikov’s 
method in order to determine the ultimately critical 
combination of wave excitation, damping and 
restoring capability (Spyrou 2000).  
 
2.6 Determining the probability of encounter of 

critical wave groups. 

For resonant - type criteria (beam-sea resonance, 
parametric rolling) we need to calculate the 
probability to encounter a wave group with a 
number of successive wave periods near the critical 
value and the corresponding wave heights 
consistently above the critical height.  
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Bivariate distributions of wave height and period 
have been proposed by a number of investigators 
(Longuet – Higgins 1975 & 1983; Cavanié et al. 
1976; Tayfun 1993). The probability density 
function (pdf) proposed by Tayfun (1993) is: 
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spectrum bandwidth ε is given by: 
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The parameter  depends on  and the 
frequency spectrum. According to (Stansell et al, 
2002) is calculated: 
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Tayfun (1993) approximated the conditional 
distribution of successive wave periods given the 
wave height on the basis of the Gaussian 
distribution for one wave period. Wist et al. (2004) 
noted that, for three wave periods at least, the 
multivariate Gaussian distribution is a satisfactory 
model of the conditional distribution. Their 
conditional pdf of p successive wave 

periods , given the corresponding 

wave heights exceeding the threshold  is given 
as follows: 
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where the correlation matrix is given by: 
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are calculated with equations (2) and (3). Assuming 
the Markov chain property, the correlation 
coefficients 
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The correlation coefficient 12ρ of two successive 
wave heights is calculated according to the next 
equation: 
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where ( ) ( )KE ,  are complete elliptic integrals of 
the first and second kind, respectively. 
 
It was noted earlier that, for resonance phenomena, 
it would be desirable to know the probability a 
number of successive wave periods to lie in some 
time interval[ ]1 2,τ τ , given that the corresponding 

wave heights exceed the critical level  that is 
already estimated from deterministic analysis. We 
have carried out calculation of such probabilities on 
the basis of the above procedure and the result is 
shown in Fig. 2. Specifically, it is shown the 
probability to encounter a wave group with 

crh

2,...,6p =  successive wave periods in a time 
interval around the spectral mean period (of course 
this value is not so critical for capsize, it is selected 
only for demonstration of the approach - we could 
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have taken, instead, the time interval around the roll 
natural period, half of it, etc.) for a range of critical 
wave heights .  crH
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Figure 2: Calculated probability of encounter of specific 
wave groups 

 
For other stability criteria (e.g. pure loss of 
stability) the joint distribution of wave height and 
period , like the ones of Longuet – Higgins 
or Kimura, are directly applicable. Furthermore, a 
pdf of wind speed

( , )p H T

( W )p U  can be used (e.g. the 
Rayleigh distribution, see Bledermann 2004), 
through the calculation from the previous 
deterministic step of the critical wind speed. 
Assuming the events as independent (of course this 
is debatable), the probability to encounter the 
critical excitation from wind and wave can be 
calculated as (see also Fig. 3): 

[ , , ] ( , ) ( )WP H T U p H T p U dHdTdU= ∫∫∫   (11)  

In summing up the probabilities, the percentage of 
time a ship spends in following, beam seas etc. 
should be taken into account as well as the 
distribution of operational time in terms of 
geographical areas. 

2.7 Risk assessment  

It is a matter of debate whether, at this stage, a 
stability assessment method should end with the 
calculation of the probability of instability; or 
whether the significant further step of calculating 
risks should be undertaken. A number of issues 
need to be sorted out concerning the quantification 
of the consequences of instability, in the various 
domains. This matter will be elaborated in a 
dedicated publication. 

 

Figure 3: Locus of critical weather parameters 

 
3. Mathematical model of coupled roll in beam 

seas. 

A new mathematical model is currently under 
development that could be used for analysing 
coupled rolling motion in beam seas. This model is 
outlined in the following:  
 
3.1 Equations of motions 

From kinematics and in accordance to Fig. 4, the 
equations of motion in heave, sway and roll are 
written as follows: 

Figure 4: The inertial (OYZ) and body fixed (Gyz) 
coordinate systems. 

 
( ) ym v w Fφ− =∑       (12) 

( ) zm w v Fφ+ =∑       (13) 

G GI Mφ =∑        (14) 

where v, w are the sway and heave velocity of the 
ship’s centre of gravity and φ  is the roll angular 
velocity, and  are, mass and mass moment 
of inertia around x. The transformation between the 

m GI

 4



inertial and body fixed coordinate systems is 
well-known: 
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The two forces and the moment that appear at the 
right-hand-side of (12)-(14) can be decomposed as 
follows: 

FK D
Hs W W R VF F F F F F= + + + +∑   (16) 

HsF  is hydrostatic, FK
WF  is Froude – Krylov, D

WF  
is diffraction, RF  is radiation and VF  is the 
viscous force.  
 
3.2 Calculation of excitations 

In linear wave theory, the total wave velocity 
potential is the sum of the potentials of incident 
wave, diffraction and radiation. The hydrostatic and 
Froude – Krylov (hydrodynamic) forces are 
estimated by the integration of the incident wave 
pressure (static and dynamic respectively) over the 
wetted surface of the ship. For regular waves, the 
incident wave potential is calculated from: 
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I w

w
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Φ = − t             (17)                         

cos( )wZ Z A kY tω∗ = − −     
 (18)  

From Bernoulli’s equation the pressure is: 
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The hydrostatic and Froude - Krylov forces are 
repetitively: 
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( )HSi i
S t

F t g Z n dsρ ∗= − ∫∫ , for i=2, 3, 4  (20) 
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( )FK I
W

S t

F t n d
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ρ ∂Φ
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∂∫∫ i s , for i=2, 3, 4 (21) 

where i = 2, 3, 4 correspond to sway, heave and roll 

motion, ρ  is seawater density and  is the 
instantaneous wetted surface. We should mention 
that the integration is performed over the 
instantaneous wetted surface and pressures are 
calculated from the exact wave elevation. As a 
matter of fact, the nonlinear part of the forces is 
taken into account, which is important for the 
accurate simulation of the large motions of the ship. 
The nonlinear Froude-Krylov force has a nonzero 
mean, in other words a drift force is present, which 
is likely to introduce a bias to the roll motion. The 
diffraction force should also bring about drift. It is 
well known that this drift force is proportional to 
the square of the wave amplitude and it increases in 
the short wave range where the reflection of waves 
and relative heave motion are more intense (e.g. 
Maruo, 1960; Newman, 1967). Kuroda & Ikeda 
(2002) have focused on this force in their 
investigation of ship roll with drift. This component 
is currently implemented in our model. 

( )S t

The radiation forces are frequency dependent. In 
order to study transient behaviour it is necessary to 
transform these from the frequency domain to the 
time domain. Using the impulse response function, 
obtained as the Fourier transform of the frequency 
dependent radiation transfer function, the radiation 
forces will be (Cummins, 1962): 

0

( ) ( ) ( ) ( )Rj jk k jk kF t a s K s t dτ τ τ
+∞

= − ∞ − −∫  (22) 

for  j, k=2, 3, 4        

0

2( ) ( )cos( )jk jk e eK b dτ ω ω τ
π

∞

= ∫ ω    (23) 

The convolution integral is the well-known memory 
effect.  are the added mass and damping 
coefficients. 

,jk jka b
,k ks s  are velocity and acceleration of 

the ship in the k direction of motion and eω is the 
encounter frequency. In our model we use a 
state-space approximation of the radiation force in 
order to maintain the mathematical model in the 
form of a system of o.d.e.s which enables easier 
consideration of nonlinear dynamics. 

Our model calculates also the sway drag force, roll 
damping, and cross coupling forces between sway, 
heave and roll. For example, the drag force due to 
bilge keels is calculated as follows (see also Fig. 4): 

2 2
1 ( cos( ) ) cos( )
2

BY A AG G D BKY r u Y r u C Aρ φ θ φ θ= − − − −F

 5



3 3
1 ( sin( ) ) sin( )
2

BZ A AG G D BKF Z r u Z r u C Aρ φ θ φ θ= − − − −

 1 1[ cos( ) sin( )]B A SZ SYM r F Fθ θ= − +    (24)           

 
Figure 5:  Bilge keel damping forces.    

DC  is the drag coefficient and BKA  the total bilge 
keel area. Other symbols are explained in Fig. 5. 
The method takes into account the local relative 
velocities along the hull, using the sway, heave and 
roll velocities ( , ,G GY Z φ ), the wave particle 
velocities  and (eqn. 25 and 26 below) as 
well as the detailed geometry of the hull.  

2u 3u

2
Iu

y
∂Φ

=
∂

       (25) 

3
Iu

z
∂Φ

=
∂

       (26) 

The numerical model is programmed completely in 
a Mathematica environment. As said, the system 
contains only ordinary differential equations (the 
convolution integrals are approximated by sets of 
o.d.e.s) which enable stability analysis in a 
straightforward way. Input data are, concerning the 
ship: the hull geometry, her mass and the 
distribution of mass; and for the incident wave, its 
height and frequency. The code creates panels over 
the hull whereon the static and dynamic pressures 
are calculated at successive time steps, as well as 
the angle between the horizontal plane and the 
normal vector of the panel.  

3.3. Application of the mathematical model 

As application we have studied the Japanese fishing 
vessel that has been the object of a benchmarking 
exercise by the Stability in Waves Committee of 
ITTC (ITTC 2005). Her panelization is shown in 
Fig.6. Some preliminary output from the 
mathematical model is shown below. Firstly, 
simulation of a roll decay test from extreme angle 

of release, approximately 85% of the angle of 
vanishing stability (Fig. 7). Also, numerical 
simulation of roll response near resonance for 
moderate wave steepness is shown in Fig. 8. Of 
interest is also the sway response as there is drift 
motion of the vessel (Fig. 9). Finally, we examined 
the effect of wave steepness on the mean roll angle 
(Fig. 10). As noticed, there seems to be an almost 
linear increase of the mean roll angle (towards the 
weather side), which, for 1 12H λ = , could reach  
nearly 16% of the roll amplitude. The mean roll 
angle, as we believe, comes from the lateral wave 
drift force combined with the lateral resistance 
force and the pair produces an extra roll moment 
that tends to rotate the ship, in the present case, to 
the weather side. This bias in rolling motion should 
be seriously taken into account as it may reduce 
disproportionally the dynamic stability of the ship 
(Thompson, 1997). The drift motion tends also to 
lower the encounter frequency and, as a result, 
larger amplitude motion appears later in terms of 
wave frequency. This effect is shown in Fig. 9 
where we present points of the roll response curve 
taking into account the mean drift velocity in the 
calculation of encounter frequency. 

Figure 6:  Half-hull panelization. 

-30

-20

-10

0

10

20

30

40

0 10 20 30 40 50 60 70

sec

ro
ll 

[ d
eg

.]

80

 
Figure 7:  Roll decay test 
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Figure 9:  Sway response. 
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Figure 10:  Effect of wave steepness on the mean roll 
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Figure 11:  Roll response diagram for 1 30H λ = . 

 
4. A simplified worked example 

Type of ship:  

Fishing vessel (the one used previously). 
 
Type of assessment:  

Short term. 
 
Assessment criteria:  

Resonant rolling (without wind effect). 

Norm of unsafe ship behaviour:  

Warning mode: 200 roll angle at steady state. 
 
Specification of critical wave group: 

From our numerical code, we calculate that we need 
six successive waves with encounter periods in the 
range ( )7.813,8.667  secTe =  and wave height 

above 3.518crH m=  in order to satisfy the above 
warning mode. In fact, we determine an area of the 
critical surface that consists of triplets of ( ), ,eH T n , 
(like the locus of Fig. 3) where  the number of 
waves. 

n

 
Probability to encounter the specified wave group 
or ‘worse’.  

We use for example the I.T.T.C. spectrum 
with 2.5SH m= . The calculated probability is: 
[ ]1 2 6, ,... / 0.0000143262crP T T T H H> =  

where 1 2 6, ,... eT T T T= . 
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