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ABSTRACT 

In an effort to place our previous investigations of ship roll dynamics within physically based 
limits, we extend a numerical steady state analysis to higher frequency forcing. Working with a 
simple nonlinear roll model, a number of different phenomena are discussed at above resonant 
frequencies, including sub-critical flip bifurcations and a second resonance region. 

We then discuss a highly generalised approach to roll decay data analysis that does not require 
us to predefine damping or restoring functions. The problem is approached from a local fitting 
standpoint. As a result the method has potential for further extension to more complex models 
of damping as well as restoring force curves. 

INTRODUCTION 

Previous studies of beam sea roll models [l, 2, 31 have focussed on the resonant region, where 
linear theory would predict capsize to be most likely. Here, we explore the steady state dynamics 
at higher frequencies of forcing and discuss some new features of the control space. In particular 
we discuss capsizing wave slopes at high forcing frequencies. Interestingly, the capsizing slopes 
are of similar magnitude to those at resonance. 

The derivation of accurate representations of damping functions as part of a ship roll model is 
highly desirable in the study of roll dynamics. Roll damping functions, however, are extremely 
difficult to obtain by theory or experiment. The tendency has been to remain with simple linear 
or low order nonlinear velocity dependent models [4, 51. To test the validity of such approaches 
we must be able to obtain damping functions from experimental data efficiently and accurately. 
However the difficulty in separating parameters in any such analysis has hindered improvement 
on existing ideas. Here we approach the problem from a local fitting standpoint using linear 
approximations to reconstruct a globally nonlinear curve. 

Although the approach discussed is applied over all the data, separating angle and velocity 
dependent terms remains a serious problem. We conclude by briefly discussing some ideas for 
improving our ability to deal with these difficulties. 

HIGH FREQUENCY FORCING 

During the design of roll experiments it is necessary to ascertain the forcing parameter ranges 
over which our nonlinear oscillator model is valid. In particular we need to consider two limits; 
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the maximum wave slope and frequency. The former is a consequence of the nature of waves 
and simple to evaluate. The latter is a more subtle problem related to the fact that the beam 
of a ship must be small compared to the wavelength for the model to be applicable. 

Firstly we write our roll equation as, 

IB" + B(#) + mgCZ(B) = I A ~ W '  sin(w/-r) (1 

where the prime denotes differentiation with respect to real (unsealed) time, T ,  I is the rotational 
moment of inertia about the centre of gravity (incorporating any added hydrodynamic mass), B 
is the roll angle relative to the wave normal, B(B1) is the non-linear damping function, GZ(B) 
is the roll restoring force, Ak is the wave slope amplitude (A is the wave height and k the wave 
number) and wi is the wave frequency. We also write wn as the natural frequency of linearised 
ship motions. 

We then utilise a simple non-dimensionalised model for roll motion, the Helmholtz-Thompson 
equation [2, 61 

5 + / 3 i : + z - z 2 = ~ s i n w t  (2) 

where, in terms of ( l ) ,  our two parameters are F = Akw2/BV and W = w//w,, with z = BIBv. 
We also introduce the parameter J = Ak/(2CBv) = F/w2 which is a scaled measure of wave 
slope based on a linear capsize analysis, [7]. Here, Bv is the angle of vanishing stability and C 
the effective linear damping coefficient. We also set /3 = 2C = 0.1. 

The first limit is a consequence of the nature of water waves. For a steepness above H /  A x 117 
the wave will break and the use of a simple sinusoidal forcing is no longer valid. Thus, with 
wave slope Ak = nH/A, we can write, 

The model assumes that the ship tries to follow the motions of the water particles in the wave 
and does not interfere with the pressures in the wave. This is only valid when the beam of the 
ship is small compared to the wavelength. We can thus write a minimum wavelength, Aman, 
permissable in terms of the beam, b 

Aman - - eb (4) 

where we take, as a first estimate, E ;=: 6. This in turn gives us a maximum forcing frequency 

leading to 

where W, and Tn are the natural roll frequency and period of the ship. Note that this second limit 
is due to the approximations of our roll model whereas the first is a feature of wave behaviour. 

Substituting in two real ship values (a purse seiner [S] and a container [g]) for beam dimension 
and natural frequency we find, 

Jmaz 
3.2 

W- 

1.4 
1.9 

S hip 
Purse Seiner 
Container 

8v [degrees] Tn [S] b(m] 
40 7.47 7.6 

19.4 25.4 
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Therefore as a first step we extend previous steady state 
t analyses to frequencies up to w zz 2 with the additional 

limit Jmat = 3. Using numerical techniques we are 
-1.9 fT<[.t 

accurate indicator of capsize in the control space. Figure 1: Schematic example of a high he- 
quency capsize mechanism 

Figure 1 shows a schematic example of a discontinuous 
jump found at higher frequency forcing. The solution 
path shows restabilisation after a sub-critical flip bifurcation onto a period 2 oscillation. Here 
we would see a sudden increase in roll amplitude. In this case the flip bifurcation is not a good 
estimate of capsize. With further increase in F, the system undergoes a period doubling cascade 
to chaos, before escaping. Note that the fold Y and the subsequent flip Z are bifurcations of the 
period 2 oscillation. 

f - .  
able to plot the development of steady state oscillations sub-critical flip 

__3 
: whilst varying wave amplitude (or slope). This process 1.. 

is repeated for a range of forcing frequencies. For be- 

We illustrate the high fkequency bifurcations in a control space diagram, figure 2. The steady 
state capsize line show the wave slope at which capsize occurs when J is increased in small steps 
fiom zero. The ragged nature of this line is primarily due to the computational approximations 
required in the numerical procedure. 

._.. 
, , , . . . . . ,_.' .... 

Figure 2: Bifurcation diagram for the capsize equation (2), extended to higher W. The flip C is super-critical at 
large and small frequencies: it is sub-critical between the codimension 2 events at which is meets fold X (W 1.3) 
and fold Y (W 2). Damping coefficient, 0 = 0.1. 

low resonance frequencies it has been shown [l01 that $ 
5 for (2), as F is increased, escape (corresponding to cap- 

/ fold Y size) occurs with a jump from a fold bifurcation. Above 
resonance the system escapes from a chaotic orbit af- 

I ter a period doubling cascade. For the latter case the flip Z 
I: initial flip bifurcation is often taken to be a sufficiently 

Importantly we find that the flip C is a good estimate of capsize only below W == 1.8. However, the 
discontinuous jump (at the sub-critical flip) for W > 1.8 must be considered a highly dangerous 
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phenomenon. 

Of further interest is the existence of an effective second resonance region at W = 1.8 which 
shows qualitative similarity to the 'wedge' at resonant frequencies. At this second resonance 
capsizability of the model (as measured by J rather than F) is comparable to that at  resonance. 
Note that the use of the scaled wave slope, J, rather than the amplitude, F, gives the correct 
emphasis to capsize in this higher frequency region. A simple design formula (based on a linear 
analysis), [2], predicts capsize at  J = 1, which is a reasonable lower bound in the above case. 
For higher damping, this J = 1 formula is found to be more accurate. 

ROLL TIME SERIES ANALYSIS 

We have recently been considering whether we can extract the damping and restoring curves 
from simple roll decay data. In general, given a roll decay time series we can take two basic 
approaches to fitting our nonlinear model to the data; global or local. A global approach 
predefines a polynomial to describe the damping (or restoring) functions. The predictions of 
such a model can thus be fitted to the data over some number of roll cycles. A local method 
does not require the pre-definition of these functions and instead fits local linear approximations 
over small sections of the d a t a  These local approximations are then combined to reconstruct a 
global, nonlinear fit. Here we present the basic method and discuss its failings as well as their 
possible solutions. 

The first step is to model the time series so that we can obtain estimates for its derivatives. 
At time ~i the time series will have some value Oi. Using the surrounding points we can also 
approximate ei and e,. We may employ a number of difTerent methods to do this. Here we 
employ a Savitsky-Golay filter [l11 that we have succesfully used to obtain double derivatives 
from experimental roll decay d a t a  We again use our roll motion model (1) and assume that we 
can write the two functions ~ ( 9 )  and GZ(8) as locally linear. We can now write our equation 
of motion locally as, 

and 

GZ(~)lOCd = + p8 (8) 
c = B0 + ~ l e  (9) 

we write Bo + mgX = C, we are left with three unknowns (B1, p, C )  and thus require three F- equations to find these unknowns. 

Therefore we simply need to sample the time series at  three nearby points. Nearby here means 
that they must be close enough in phase space such that our local dynamical model is valid. 

This gives the local slopes for ~ ( 9 )  and GZ(8) and the constant C .  Since we cannot easily 
separate C we instead specify GZ(0) = 0 and B(0) = 0, and integrate over our local slopes to 
reconstruct the restoring and damping curves. 

We then scan through our time series selecting three consecutive points every step and solving 
the equations to obtain locally fitted parameters over a wide range of phase space. We then 
reconstruct the curves by integrating over the local slopes. 
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EXAMPLES AND IMPROVEMENTS 

i As an example we have taken some numeri- 
cally generated data from a model with known 

i 
1 ,  restoring and damping functions (the symmet- o 3s - 
i 
t ric escape equation, [2], which is similar to (2) 0.3 - 
i' 
t but with a restoring force of z - z3). Here 0 25 - 
i we have reconstructed damping and restor- i 

E ing simultaneously. Figure 3 show the recon- 
structed GZ curve. 

t Note that for this method velocity and an- 
gle dependent parameter separation remains -0 OS . 

0 -0.1 
- 

a problem (the equations we are solving to 
-o.15 

# 
i find B1, p and C become ill-conditioned and o 0.4 0.4 0.6 o 8 1 

B 
much of the data series proves unusable for 
this method. Therefore we have applied Figure 3: Rrmnnruction of restoring force c-e for the 
method carefully over parts of the data set symmetric escape equation, the reconstructed points are f e which it succeeds. shown with the original curve 

! In figure 4 we plot a reconstructed nonlinear damping curve. Here the restoring function was 
pre-specified and the damping taken to be dependent only on velocity. 

Therefore parameter separation was not a 
0.09 . problem and all of the data was used. The 
0.08 - routine has also been applied to some experi- 
0.07 - mental roll decay data and was found to per- 

0.06 - form well in the presence of limited precision 

, 0.05 - and noise. This experimental data was from a 
z 
m 0.04 - low angle decay test and so the restored func- 

tions were very close to linear. It was found 
0.03 - that calculations of natural frequency using 
0.02 - the reconstructed GZ gave results accurate to 

within 1% of the measured values. 

o 0.1 0.2 0.3 0.4 0.5 0.6 can improve our ability to deal with the 
0 

parameter separation problem by employing 

Figure 4: Reconstruction of a linear plus cubic damping systems analysis [l217 to provide us 
curve with specified GZ with more information on how and where the 

method fails. Treating the fitting as a matrix 
inversion problem we can rewrite our set of equations as, 

or 
Az = b (11) 

By expressing the problem is such a way, we are able to utilise Singular Value Decomposition 
f 
fc 

(SVD) which can be used to both solve for z and also provide information on separability of the 

! parameters. When the data does not distinguish well between two or more parameters then A 
f e becomes ill-conditioned and this can be detected with SVD [l].]. 

i 
L 
i 
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The solution is obtained by decomposing A and then back-substituting given b (it is similar in 
application to solution by standard matrix decomposition methods). If A is ill-conditioned then 
SVD will provide the best approximation to a solution in the least squares sense. Thus we are 
able to go further than is possible with the simpler approach. 

A further reason for employing SVD is that we can add additional rows to A and solve for z 
with a reduced likelihood of ill-conditioning. We can do this by simply selecting more nearby 
data points to provide local roll equations. A still more powerful addition is to include further 
rows representing energy balance equations for the sampled data points. 

CONCLUSIONS 

A steady state bifurcation analysis of a simple roll model has been extended to higher forcing 
frequencies. We have discussed a number of new phenomena, with particular reference to capsize 
mechanisms. The higher frequency region has been shown to bear qualitative similarities to 
that around resonance and we have identified a second resonance region. Capsizing wave slope 
a t  frequencies around W = 1.8 is found to be comparable to that a t  resonance, although the 
feasibilty of such conditions occuring must be considered. F'urthermore we have shown that the 
usage of the flip bifurcation as a capsize estimate must be made carefully in this high frequency 
regime. 

Secondly, we have applied a local fittingmethod to numerically generated roll decay data and 
succesfully recovered a nonlinear dampidg function. The method has been extended to the simul- 
taneous reconstruction of restoring and damping curves, but in this case parameter separation 
problems remain. The basic dScul ty  is the separation of velocity and angle dependent terms 
over the whole data series. We have discussed the application of Singular Systems Analysis to 
improve our ability to deal with this problem and sketched out how it may be applied. 
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