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Ship Capsize Assessment and Nonlinear Dynamics 

Certain aspects of ship stability assessment in beam and in following seas are discussed. It is argued that 
the use of detailed numerical codes of ship motions cannot solve alone the assessment problem. On the 
other hand, whilst simplified models can be very useful for acquiring a fundamental understanding of the 
dynamics of capsize, still a good number of theoretical obstacles need to be overcome. In respect to 
beam sea capsize, firstly we discuss the structure of the mathematical model and the types of excitation. 
Then we consider the mechanism of roll damping very near to capsize angles and we point out a very 
interesting connection that exists with the specification of predictors of capsize based on Melnikov 's 
method. Finally we sketch out a constrained design optintization procedure which can be used forfinding 
those ship parameters' values where resistance to capsize is maximized. In respect to the following sea, 
we show that lycapsize is examined in a transient sense, it should he possible to have a unijed treatntent 
of pure-loss and parametric instability. We also show what is the qualitative effect on the stability 
transition cun.esflom bi-chromatic waves. 

INTRODUCTION 

Whilst one might think of many different 
methods for assessing the behaviour of a system, 
there is little doubt that the most reliable are those 
which are based on sufficient understanding of the 
system's key properties. For ship stability 
assessment however the application of this 
principle has been, so far at least, less than 
straightforward; because the behaviour of a ship in 
an extreme wave environment, where stability 
problems mostly arise, is often determined by very 
complex, hydrodynarmc or ship dynamic, 
processes. 

Ideally one would wish of course to have a 
full, meticulously developed and validated 
mathematical model of ship motions on which to 
carry out detailed analysis of dynamic behaviour 
and instability. Unfortunately this seems still to be 
well beyond our reach. But even if such a model 
were available, we would hardly know how to 
carry out in depth analysis for the nonlinear 
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dynamical system in hand2. As a result, one can 
see two lines of research evolving, and it is 
essential that interaction between the two is 
encouraged: the first dealing with detailed 
mathematical modelling of the motion; whereas 
the second aiming to provide a better 
understanding of dynamic behaviour on the basis 
of simpler models that can capture however key 
features of the system's response. Areas of concern 
can be identified however in either of these 
drections: As the mathemtical model of ship 
motion becomes larger, there is a cumulative effect 
from the uncertainties that often underlie the 
various assumptions and the unavoidable 
empiricism which h k s  behind model 
development. On the other hand, when a simple 
model is used it is sometimes uncertain to what 
extent the observed behaviour corresponds to that 
of the real system. 

As is well known, the motion of a body on the surface of the sea 
entails partial diierential equations (PDEs) for its description. As 
evidenced h m  approximations of PDEs h m  systems of ordinary 
differential equations (ODEs), an infinite number of ODEs is 
required for absolute equivalence. This corresponds to the well 
known fact that memory effects (or frequency dependence of 
hydrodynamic coefficients) render the system's state-spa intimite 
dimensional. 



The first direction represents essentially the 
extension of the traditional seakeeping approach 
fiom small towards larger amplitude motions. 
However the second is quite novel in naval 
architecture. Its importance is owed to the fact that 
nonlinearity can make large amplitude responses 
follow completely different patterns that their 
smaller-amplitude counterparts. As is nowadays 
increasingly realized, a ship, like many other 
dynamical systems, can exhibit a very rich 
envelope of large-amplitude behaviour which is 
sometimes very difficult to unravel. In order to 
understand the underlying principles of safety- 
critical behaviour one needs to have an effective 
methodology which will guide his search and here 
is where the techniques of nonlinear dynamics' 
can provide truly valuable inputs. 

These techniques enable, at first instance, 
better focus during physical model testing. This is 
essential because in extreme seas comparisons 
between theory and experiment are non-trivial due 
to the fact that the number of unknowns involved 
is very large. But perhaps the more far-reaching 
implication is that they offer a potential for 
developing effective methods of stability 
assessment that can combine scientific rigour with 
practicality for better design and safer operation. 
This potential allows us to start thinking also 
about intregrated stability assessment methods 
which will cover mechanisms of capsize associated 
with different environments and ship-wave 
encounters. 

In the previous Workshop in Crete we have 
outlined some of our recent work along the above 
lines: We proposed a metl~od of interfacing the 
findings of the nonlinear dynamics approach of 
ship capsize with design, in respect to the 
mechanism of capsize in resonant beam seas [I]. 
Also we continued our investigations of the 
instabilities of the following/quartering sea, 
discussing the interesting parallel that exists 
between yaw (related with broaching) and roll 
instabilities (related with pure-loss and parametric 
instability) [2]. 

The present paper consists of two parts: 
Firsly we discuss, very much in the spirit of this 
Workshop, some of the problems that exist in 
developing an effective stability assessment in 
beam-seas. Then we explain a practical assessment 
method for pure-loss and parametric instability in 
following seas. 

BEAM-SEA CAPSIZE 

A number of issues are currently under debate, 
such as the suitability of single roll or coupled 
models, the use of deterministic or stochastic-tqpe 
of excitation; and the quantitative prediction of 
damping especially up to very large angles. 

The suitability of the mathem&'cal model 
It is quite common, especially after Wright 

and Marshfield [3] to model roll motion in regular 
beam waves by expressing the roll angle relatively 
to the local wave slope. A singledegree roll 
equation is then used to describe roll dynamics 
with nonlinearities in damping and in restoring. 
For ships with small beam compared to the wave 
length, it is often reasonable to assume that, in 
sinusoidal beam waves they experience a 
fluctuating "effective gravitational field" g, 

where t l~e centrifugal acceleration of the water 
particle is combined with the acceleration of 
gravity g [4]. This says essentially that a small 
boat beam to long waves tends to follow the 
motion of the water particles and it allows direct 
use of the calm-sea restoring of the ship in the 
equation of relative roll. From an axes system 
tracking the motion of a water particle and having 
one axis always tangent to the wave surface the 
single roll model is then perfectly adequate. 

But if it is intended to carry out model 
experiments, the physical model should rather not 
be constrained rigidly in sway because then the 
model cannot follow the motion of the water 
particles and direct comparison between theory 
and experiment becomes dacult. On the other 
hand, if the model is not constrained at all, it is 
likely to yaw and to have also a mean drift which 
also hinders comparisons with theory. 

There is of course the possibility also that the 
ship "cannot" follow the motion of the water 
particles. Then the coupled roll sway and heave 
need to be considered along with tlle type of wave 
excitation as the above single roll model has 
encountered its limits. This is even more evident if 
the effect of non-regular waves is under 
consideration. However, one must bear in mind 
here that, unlike some seakeeping studies where 
we examine performance degradation during a 
voyage, in intact-ship capsize we are only 
concerned about an almost momentary event 
which is usually the result of encountering a small 
number of steep, often quite similar, waves with 
which the ship cannot cope. 

The na&e of the excitation dese~ves however 
some further attention: In our capsize studies we 
are usually restricting our analysis, one might 
think unjustifiably, in excitations produced by 



steep but non-breaking waves. This is an 
idealization which can result in unsafe predictions; where x, is the initial angle at r = 0 ; ;1 is a 
because in the extreme environments where we 
investigate capsize, wave breaking is quite 
common. The nature of such excitations, a 
combination of smooth and impacting, and their 
magnitude can be very conducive for capsize. 

But even if we assume that the structure of the 
conventional mathematical mnodel is satisfactory, 
at least two further tasks need to be tackled: (a) To 
derive roll damping coefficients that can be 
applicable for near-capsize-angle motions; and (b) 
to idenw capsize thresholds in terms of 
combinations of wave amplitude and frequency. 
Interestingly, the two tasks are, as shown below, in 
fact intrinsically connected. 

Derivation of damping coefficients 
Currently it is quite common to derive the 

damping coefficients from free roll decrement data 
under the assumption that the undamped roll 
would be basically harmonic. However, near 
capsize the nonlinearity of restoring is very strong 
rendering the response of a rather different type. 
This means that energy dissipation near capsize 
angles is not taken into account accurately when 
the coefficients are derived, although the values of 
these coefficients are critical in the theoretical 
investigation of capsize. 

To explain these, let us consider a scaled 
equation of free roll with a quite general, quintic- 
type restoring curve: 

P where x = - with p the real roll angle and p, 
P" 

function of x, and 6 ;  cn, sn are the so called 
jacobian elliptic functions (respectively elliptic 
cosine and elliptic sine) with argument ta = w t  , 
and modulus k ; w is also a function of x, and 

6 .  We note that when k + 0 we have the linear 
case and the solution (2) becomes harmonic; 
whereas for k + 1 we obtain the hyperbolic 
solution that defines the boundary of the 
Hamiltonian safe basin. 

In order to find damping coefficients 
appropriate for extreme roll angles we need to 
know how energy is dissipated at these angles 
which requires to know the trajectory in ( x ,  x) 

from one peak (that is, one crossing of the zero 
velocity line) to the next, see Fig. 1. 

For a linear roll equation such a solution is 
rather straightforward: 

A 
the vanishing angle. Differentiation is carried out 
in respect to time = @ot where @o is the Fig. 1: Numerically derived roll decay for a quintic 
'undamped' natural frequency and t  is the real polynomial when x, = 0.95. By c, and c, 
time. D(x) is the damping function that normally are indicated respectively the linear and the 

includes a linear plus an absolute quadratic or cubic damping coefficients (nondimensional) . 

cubic component of roll velocity; and 6 
parametrizes the whole fanlily of quintic restoring 
curves and therefore through 6 we can establish a 
correspondence with the real (GZ) of our ship. 

As has been shown in [5 ] ,  if damping is 
neglected we can obtain the following exact 
"Hamiltonian" solution for large amplitude 
relative free roll (assuming that the "ship" was 
released with zero intial velocity): 

Expressions for "mildly" nonlinear (GZ) can also 
be derived through a perturbation approach. But 
for the strongly nonlinear case, if damping is 
present, exact analytical solution cannot be 
obtained; and a perturbation-like approach (with 
damping's nonlinearity as small quantity) 
involving elliptic functions is extremely complex 
whilst the accuracy achieved may be doubtful. 

In [5] we have shown that it is possible to 
iden* fully analytically the roll decrement per 
11alfcycle for roll angles arbitrarily close to the 
vanishing angle if we assume the roll trajectory to 
constitute a perturbation of the Hamiltonian 



solution. As will be shown next this fits nicely 
with the Melnikov method of capsize assessment 
which is based on the same principle. 

Predictors of capsize 
Such predictors can be derived from an 

analysis either of steady-state or from transient roll 
responses [I]. To resolve an issue which was 
raised in last year's Workshop, by "steady-state 
capsize" we mean the absence of stable steady- 
state solution in the vessel's response. If such a 
state does not exist at a certain level of wave 
forcing and damping, the ship simply cannot stay 
upright. On the other hand, by "transient capsize" 
we mean that although a stable state might exist, 
at the initial transient stage the response is such 
that capsize occurs. As is obvious, the threshold 
wave slope of transient capsize should be lower 
than that of steady-state capsize. For this reason it 
is more sensible to predict capsize on the basis of 
transients [6]. 

A good criterion of incipient transient capsize 
can be derived £?om the so-called Melnikov's 
method through which we can find an analytical 
approximation of the critical wave slope, given the 
frequency ratio, where manifold tangencies arise 
and the domain of bounded roll motion starts 
becoming fractal, triggering rapid loss of the safe 
area of state space. Melnikov's method has been 
applied both in a deterministic and in a stochastic 
context. 

It is remarkable that the critical condition 
derived from Melnikov's method can be 
interpreted also as an energy balance: Essentially, 
Melnikov's method "says" that to iden* the 
critical wave slope given the damping, one should 
balance the work done by the forcing with the 
energy dissipated through damping around the 
remotest orbit of bounded roll (heteroclinic or 
homoclinic orbit depending on whether a 
symmetric or a biased in roll ship is studied). 
What makes such an interpretation particularly 
interesting is that it provides a connection with 
the widely debated in the early eighties method of 
energy balance for capsize assessment. That 
method however relied on harmonic or nearly 
harmonic responses. 

Another observation on Melnikov is that it 
makes use of the perturbed Hamiltonian dynamics 
approach. This is the same fundamental 
assumption that has allowed, as discussed in the 
previous subsection, to find analytically the roll 
decrement during decay experiments for arbitrarily 
large initial roll. 

From the above observations the conclusion 
may be drawn that the tasks of deriving damping 

coefficients and of predicting capsize are 
intrinsically connected and that, consistency in the 
followed approaches should be ensured. 

Stabirity of symmetric and of biased ship 
As has been pointed out by Thompson [6], the 

presence of even small bias, can reduce very 
considerably the critical wave slope where capsize 
occurs. It seems logical that a dynamic stability 
criterion should take into account this fact; but 
how much bias in needed in the assessment is very 
hard to define in a rational manner. 

As is well known, a ship can become biased as 
the result of wind loading or cargo imbalance; but 
what is further notable is that a ship shows a 
"preference" to capsize towards the wave; and that 
in large waves an initially symmetric ship may 
develop also some "dynamic" list towards the 
wave. This would possibly require consideration of 
sway and higher order wave effects to explain but 
whether these matters should be taken into account 
in a capsize assessment is a rather open question at 
this stage. 

About the design problem 
It is of course highly desirable the information 

produced from the analysis of dynamics to be 
linked with the design process. Unfortunately, 
until recently this problem had not even been 
addressed, [I]. Generally, there are two main 
problems that need to be solved: Firstly, how to 
maximize the critical wave slope where manifold 
tangencies arise, over a range of wave frequencies; 
and secondly how to generate practical hull shapes 
given some desirable form of the restoring curve 
identified from the first task [essentially the 
inverse of the conventional task of deriving the 
(GZ) curve given a hull]. Here we shall discuss in 
further detail the first task. 

Let's take the rather generic equation of roll 
with linearized damping and cubic-type (GZ) 
which has been thoroughly studied in the past: 

with B the dimensional equivalent damping, 
Mthe ship mass; and I, AZ, respectively the 
roll moment of inertia and the added moment. 

It can be noticed that in the expression of the 
equivalent damping ratio <, (GM) appears in the 

denominator which means that for our scaled 



equation increase of (GM) reduces 4 ! However, 

at the same time the forcing is reduced even more 
w ' 

since F cc C12 = 
M.(GM) ' 

I + &  
From Melnikov we find the critical forcing 

FM to be: 

In order to understand the meaning of this we 
should go back to dimensional quantities in which 
case we can obtain the following expression of 
critical wave slope ( ~ k ) ,  : 

(6) 
where w is the wave frequency. 

Fig.2: Basic trend of the dependence of (GM) 011 
the critical wave slope 

Increase of damping or of the vanishing angle are 
the typical ways to improve the resistance to 
capsize according to this mechanism 161. However 
some more intriguing observations are possible 
also on the basis of Fig. 2: Expression (6) allows 
for having a situation where very low (GM) can, 

under certain circumstances, be beneficial! It is 
essential therefore that the findings are not applied 
blindly but an understanding about the physical 
nlechanisms involved is developed, and areas of 
practical validity are established. 

As for any resonance mecl~nism, it can be 
dealt with by increasing damping andtor by 
detuning our system from the excitation. As the 
natural frequency of the ship depends on (GM) , 

such detuning can be achieved not only by 
increasing but also by reducing (GM) . In fact, it 

is possible that if the phase of rolling response is 
nearly opposite to the phase of the wave, then the 
"absolute" roll motion (the wave slope plus the 
relative to it roll angle) can be very little, giving 
the impression that ship is "insensitive" to the 
excitation. Of course, under no circumstances 
could be advised to set low (GM) for the ship 

because then capsize can easily happen from other 
reasons. 

In a practical context it is sensible, rather than 
trying to establish the capsize limits of the ship, to 
set threshold absolute roll angles beyond which the 
ship is in grave danger of capsize due for exanlple 
to cargo shift. In such a case however, we must be 
very careful in the interpretation of the output of a 
roll motion equation like (2). Because a small 
relative angle could mean a quite substantial one 
in absolute terms given the wave slope; and on the 
other hand, as hinded earlier, the phase between 
the roll response and the wave can make absolute 
rolling to be very large or very small. 

As has been outlined in [l] it should be 
possible to combine an expression like (6) with an 
optimisation process, given certain ship parameter 
constraints obtained from existing stability 
standards. For example, for the considered 
simplest possible case of cubic restoring, the Naval 
Engineering Standard 109 would produce as far as 
(GM) and p,, are concerned, the following 

constraints: 

The area criteria for (GZ) up to 30deg, 40deg 

and between 30 and 40deg give: 

(a) (GM) ( 0.137-- O;:] 2 0.08 (7) 

( 3 2 . 1 3 3  (8) (b) (GM) 0.244 - - 

Further constraints: 

max(G2) 2 0.3 (d) 0.385(GM) qv 1 0.3 (10) 

(e) (GM) 2 0.3 (11) 



q ~ ( ~ ) ~  2 30 deg =. ( f )  q,, 2 0.9064 rad (12) 

(this is less than the recommended range of at 
least 70 deg ). 

The above lines are essentially sketching out 
an optimization process where Ak , expressed on 
the basis of (6), or preferably with a more detailed 
expression of the criterion taking better account of 
the hull, is sought to be maximized while making 
sure that realistic constraints like the above, are 
being satisfied. 

It is very interesting that our concerns about 
the bias effects, expressed earlier, can be 
incorporated also into such a procedure. Let us 
consider the a - parametrized family of restoring 
curves with bias, where a = 1 means a symmetric 
system and a = 0 means a system allowing only 
one-sided escape [6] : 

In [7] it has been shown that it is possible to 
find analytically an expression for the critical 
(Ak) for small and for large bias; respectively as 

followin$: 
Perturbation of symmetric system (small bias): 

Strongly "one-sided" escape (large bias): 

(16) 
Again, the quantities will have to be expressed in 
dimensional form in order to be able to find the 
true critical relationship of ship parameters. 

These analytical results are of importance also for [8] and [9] 
where Melrukov's critical wave slope had been identified only 

CAPSIZE IN A FOLLOWING SEA 

As is well known, in a following sea a ship 
may capsize due to severe fluctuations of its 
righting arm. Capsize can occur either from a 
sudden divergent roll ("pure-loss") or from a more 
dynamic process ("parametric"), where roll is 
built-up in an oscillatory and gradual manner. 
Traditionally, the two mechanisms are considered 
independently. However, as they are both the 
result of time-dependence of the roll righting arm 
(in fact dependence on the position of the ship on 
the wave), the propensity for capsize could be 
assessed more effectively if the two were treated in 
a unified manner. 

Commonly, the parametric mechanism is 
examined on the basis of the principal and the 
fundamental resonance regions on the stability 
chart of a Mathieu-like equation. However, such a 
chart corresponds in fact to long term asymptotic 
behaviour wluch is rather unrealistic for a ship. 
This has created some controversy about the true 
relevance of the parametric scenario; because, 
although at realistic levels of ship roll damping the 
domain of the principal, and often of the 
fundamental resonance extend sometimes to 
feasible levels of restoring variation amplitude, 
this picture is correct if the considered number of 
wave cycles goes to infinity. Practically however, it 
is more important to know whether the instability 
becomes noticeable within a small number of wave 
cycles. But if the "allowed" number of wave cycles 
is small, the building-up of large roll requires very 
intensive variation of restoring wluch may, and 
one would indeed hope to, be unrealistic. 

Another matter that needs to be taken also into 
account, more in respect to the pure-loss scenario, 
is the physical time required for capsize: At lower 
frequencies of encounter the ship may capsize 
more easily because it stays for longer time at 
unfavourable for stability regions of the wave. But 
because the ship is advancing very slowly 
relatively to the wave, the time for capsize can be 
excessively high. It is quite obvious in this case 
that for capsize assessment it becomes important 
where the ship was at t = 0 .  One possible way to 
deal with this dependence on the initial phase is 
to assume that the ship, at t = 0 is just entering 
the negative restoring region of the wave. For 
sinusoidal variation of (GM) this phase, say x , 

is given from x = - arcco where h is the 43 
amplitude of variation of (GM) 

numerically 



The major effect that the number of cycles has 
on the first resonances is shown clearly in Fig. 3 
for a typical linear Mathieu-type roll equation 
which, on the basis of scaled quantities, takes the 
form: 

40, 'P 
where a=,, x=- but this time 27=0 , t  

0, 'P" 
(time nondimensionalized in respect to the 
encounter frequency o, ). Also, oo is the 
(dimensional) natural frequency and k is the 

B 
equivalent damping factor (2k = -- 

I + M  
1. 

In Fig. 3 we examined whether the roll angle 
reaches the level of the vanishing angle witlun a 
prescribed number of wave cycles. 

It is noted that if only four cycles are 
considered the h required is very high (h = 2.1, 
not shown in the graph). As the order of the 
resonance increases the required amplitude 
becomes less dependent on the number of wave 
cycles; but the practical relevance of these 
resonances for a ship is rather minimal. It is also 
noted that, the lower the number of cycles the 
more influential becomes the initial position of the 
ship on the wave. 

Fig. 3: Capsize regions in respect to the f is t  six 
resonances, with parameter the considered 
number of encounter-wave cycles rn . The 
initial heel was x, = 0.01 and as capsize was 

considered its 100-fold increase; 
2 k l w o  = 0.02510.144. 

Fig. 4 provides a unique combined view of 
regions of pure-loss and parametric instability on 
the basis of cubic-type restoring where the 
nonlinear term is time independent. This is 
allowed by the fact that behaviour is examined in a 
transient sense. Capsize occurrences are recorded 
if they happen in a small number of cycles and 
within limited physical time. 

Of course, different hull forms will result in 
different restoring variation laws which, in turn, 
will give different arrangements of the capsize 
boundaries. At the moment, we are still lacking a 
systematic procedure for dealing with this fact. 
This is an area of research currently considered. 

Fig. 4: Capsize regions for cubic-type restoring in less 
than 8 wave cycles and requiring less than 
300 sec (natural frequency in calm sea 
0.381sec-I). The dark regions correspond to 
capsize according to the parametric scenario. 
The white upper-right region is capsize in less 
than 50 sec and is according to the pure-loss 
mechanism. Quick capsizes ( t < 50 sec) occur 
also in the fist two resonances and it is notable 
that the required amplitude h is comparable 
with that of pure loss. The graph is drawn with 
2k = 0.025 and x, = 0.1 . 

Behaviour in bi-chromatic seas 
A possible extension of the traditional 

examination of parametric instability on the basis 



of sinusoidal variation of (GM) ,  is to study the 

behaviour of a ship under the effect of a wave 
group containing at least two independent 
frequencies . We shall assume that, in a qualitative 
sense, this could bring about a quasiperiodically 
varying restoring which, for two frequencies 
present, results in the following roll equation: 

In (18) the parameters rand  v represent 
respectively the relative strength of the basic 
frequency and the ratio of the second frequency to 
the basic. 

Fig. 5: Parametric instability in bi-chromatic waves for 
32 wave cycles. 

A general characteristic of the response is that a 
number of new "spikes" are growing on each 
primary resonant. However the effect of the extra 
frequency is not very influential on the principal 
resonance which extends at relatively low levels of 
required (GM) variation amplitude h . 
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