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For many engineering systems that either rely on some sort of feedback for their stability 
or feature retardation in their responses, the type and magnitude of delay is critical for 
their behaviour. In this paper, a comprehensive treatment of the effect of delayed control 
on course-keeping capability is presented. Independent time-lags in the heading angle 
and yaw rate feedbacks are considered, in discrete as well as in continuous form. 
Stability boundaries are derived, either numerically or through approximate analytical 
solutions. Exact analytical solutions are sometimes possible. Two cases of behaviour in 
large following waves where the linear approach cannot be applied are also considered. 
The first concerns a parametrically driven system in yaw. The second is about oscillatory 
sulf-riding. 
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1. Introduction 

The first efforts for automatic steering of ships date back to studies based on the gyro- 
compass by Sperry (1915 & 1922). Noteworthy analytical and experimental 
investigations were first undertaken however by Minorsky (1922 & 1930). Minorsky was 
apparently the first to investigate also the effect of various transmission time-lags with a 
third-order functional differential equation of yaw. More intensive research followed the 
Second World War. Gimprich & Schiff (1949) have used the swaylyaw model of 
Davidson & Schiff (1946) and they described the delayed rudder response due to the 
inertia of the steering gear as a first-order linear differential equation of the rudder angle. 
This is equivalent with considering an exponential time-lag. For fast moving objects they 
discussed also the need of taking into account constant-type lags. 
Chou et al. (1974), during their widely known radio-controlled model tests in San 
Fransisco Bay, experimented with an autopilot having a dead-band as a weather- 
adjustment instrument in rough seas and identical time-lags for yaw angle and rate. The 
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exponential -type response of the steering gear was taken into account by Astrom (1980) 
in his design method for fixed gain and adaptive autopilots. More recently, Papoulias et 
al. (1994) examined the influence of positional information time-lags on track-keeping. In 
the SOLAS Convention is prescribed that the steering gear should be capable of putting 
the rudder from 35 deg on one side to +30 deg on the other side in less than 28 sec, when 
running at maximum service speed and with deepest seagoing draught. It would be 
perhaps more sensible however to have the rudder's rate scaled on the basis of ship size 
and speed, Eda & Crane (1965). Nowadays rudder response rates as high as 15-20 degls 
are possible, Fossen (1994). 
The derivation of a universal stability criterion for dynamical systems with dependence 
on a past state has been pursued for many years. As a result, the general literature is 
abound with stability criteria. They are classified as, analytical, numerical, or, 
geometrical. Well known criteria are, Pontryagin's, that is quite popular in mathematics, 
the 2-decomposition method, often referenced in mechanics and Nyquist's criterion that 
is widely used by control engineers, St6pBn (1989). Whilst it is generally true that delays 
tend to enlarge instability regions, in certain cases delays can turn unstable systems into 
stable. Also, the arrangement in the parameters' space of stable and unstable domains can 
be quite complicated, particularly if the delays are allowed to become large. An 
interesting example of an equation with cubic-type nonlinearity in restoring and time-lag 
in this term can be found in Kapitaniak, (1991). There is shown that increased delay 
causes decrement of amplitude at resonance while the unstable parts of the steady 
response curve near resonance tend to become stable. Nonlinear approaches for ship- 
specific delay problems are rather rare. Minorsky again, (1948), discussed the active roll 
stabilization problem on the basis of a second-order equation with retardation in damping. 
The interesting dynamics exhibited by this system were reconsidered recently by Mitsui 
et al. (1994). 
In the present paper we consider the following aspects: Initially we analyze how 
independent "proportional" and "rate" time lags affect yaw stability. The accuracy of 
analytical approximations is assessed through comparison with numerical predictions. 
Exact analytical results are also presented when this is possible. Next we consider the 
problem of having continuous-type control delays. As shown this poses no serious 
problem if the weighting functions in the integrals representing the feedback are known 
and the system is still linear. In the remaining sections of the paper we investigate some 
aspects of the effect of long and steep regular waves for ship steering. Firstly, we 
examine a case of parametric instability in yaw that was recently pointed out, Spyrou, 
(1997). The first approximation of the effect of delay on the stability boundary that 
corresponds to the principal resonance is presented. The final problem that we analyze 
concerns the onset of oscillatory surf-riding, Spyrou (1995), based on a multi-degree 
nonlinear mathematical model. 
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2. General formulation 

The stability of solutions of differential equations with delay is discussed in detail in 
several books, such as, Mishkis (1951), Minorsky (1962), Belman & Cook (1963), Hale 
(1977) and StCpin (1989). The simplest mathematical formulation corresponds to the so- 
called difference-differential equations ("d.d.eU). A linear second-order d.d.e with respect 
to a variable X (which could also be a vector) with, say, two independent delays in 
restoring, r l l ,  rl2 and two other delays in damping, r21, r22, appears in the following 
form: 

X(t) = -a21 i ( t  - rZl) - aZ2 i ( t  - rZ2) - al l  ~ ( t  - r i l )  - a12 x(t - rj2), for 5, > 0 (1) 

In (1) the dots indicate differentiation over time t and av, i = 1,2.. ., j = 1,2.. . are 
constants. Equation (1) is a special case of the more general functional representation: 

The terms al(r) and a2(r) can be regarded as weighting factors, while 71 and 72 indicate 
delay intervals. To examine stability we generally proceed either by taking the Laplace 
transform of the two sides of (2), or more simply by substituting a solution x = xoek in 
order to derive the corresponding characteristic function, D(A) which is then given by: 

Stability depends on the roots of the above function which are the eigenvalues (the so- 
called poles) of our system. We are especially interested about the sign of their real parts 
since instability arises as soon as any of these turn positive. However, as ?L appears also as 
an exponent in (3), the characteristic function is of transcendental nature and usually for 
such equations exact analytical expressions of the poles cannot be derived. In fact, for 
such a system an infinite number of eigenvalues exist, irrespectively of the order of the 
d.d.e. (this is easily seen if we think in terms of the series expansion of the exponential 
term which is an "infinite-order" polynomial of A). Thus the difficulty about solving 
analytically a d.d.e lies before anything else in the linear formulation itself. 
For several engineering systems that use feedback, either of discrete type or continuously 
sampled over a short period of time before present, it is sensible to treat delays as 
relatively small quantities and thus it is often sufficient to make use of a truncated Taylor- 
series expansion. The equation obtained can then be treated in the customary way for 
ordinary differential equations since the "lags" appear as external coefficients. In general 
however one has to bear in mind that some important dynamics may be eliminated during 
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the approximation process. Numerical approaches based on a high-dimensional 
approximation of the system's infinite phase-space offer nowadays a much better 
potential, Mitsui et al. (1994). 

3. Effect of discrete delays 

Consider the simplified. linear ship manoeuvring model of Nomoto (1972): 

where T', K' are the well known time and gain constants; and v, 6 are the heading and 
rudder angles. For our notation where positive rudder angles result in positive yaw, 
T', K' are positive for a directionally stable ship. The primes indicate 
nondimensionalized quantities. Time is nondimensionalized on the basis of the relation 

U 
t' = t- where U, L are respectively, forward speed and ship length. 

L 
A control law based on proportional and differential gains is further introduced. 
Feedbacks are obtained at two different time instants before present for heading angle and 
at two other instants for yaw rate. In addition, an "exponential-type" response model of 
the steering gear is assumed: 

The new symbols that appear in (5) are, the rudder's time constant, TA, the proportional 
to the heading angle gains, k l I ,  k12,  and the proportional to the yaw rate (differential) 
gains, ql, k i 2 .  
By combining (4) with (5) we can eliminate 6 and 6': 

Characteristic function: 



Kostas J. Spyrou 

The poles of (7) can be real or complex. Here however we are interested only to know 
where the imaginary axis of the complex plane is crossed because this implies change of 
stability. Since we are looking for poles with zero real-part we can substitute A = i y in 
(7) (therefore y is real) and then request the real and imaginary parts of the characteristic 
function D(&, respectively RCy) and I(y), to become simultaneously equal to zero: 

Equations (8) and (9) are transcendental and, in principle, they cannot be solved 
analytically. The alternatives are, an approximation through a Taylor-series expansion or 
a numerical scheme. The latter will be more accurate but cannot produce solutions in the 
desirable closed form. If the delay terms are small, we can use the first-order 
approximation of (6): 
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According to the Ruth-Hurwitz criteria the conditions for stability are: 
K' 

AB > C, A > 0, B > 0, C > 0. Given that -, TL and the gains are positive, the last 
T' 

inequality is always true. If we concentrate on a case where the unsteered ship is 
directionally stable, there will be T'> 0. Combined with the fact that the delays are 
assumed positive, the condition A > 0 is also satisfied. The condition B > 0 leads to the 

1 
simple relation - - (k, + k12q2)  + ki l  + ki2 > 0. Finally the first inequality provides 

K' 
the condition: 

K' 
which, since -, T; > 0 is equivalent with: 

T' 

l  1 K ' l  1  
- + - + - - ( q l r ~ l + k i 2 $ ) ] [ K ' - ( k ~ ~ ~ f ~ + k , 2 q > ) + ( k i ~ + k i 2 ) ]  T' Td T ' T j  > ( k i i + k 1 2 ) ( ~ ~ ' )  

I t  i s  obvious that because ( 1 1 ' )  is more stringent than the condition 
1 

A > 0 o - - (kllq',  + klZq>)  + ki l  + ki2 > 0 the latter is redundant. Therefore ( l  l )  is the 
K' 

key condition for identifying the critical for stability gain-delay combinations. 
For ki l  = G2 = 0 ( l  l ' )  becomes : 

By following a similar procedure it can be shown that the condition that corresponds to 
the third-order approximation is : 



Kostas J .  Spyrou 

The second-order approximation can be obtained simply by neglecting the third order 
terms of (13). Mean curves of the relation between K' and T' based on regression 
analysis from a large number of ships can be found in Barr et al. (1981): 
K' = 0.625 + 0.375 T',  and also in ITTC (1987): K' = 0.452 + 0.481 T'. In Figure 1 are 
compared the first and third-order approximations on the plane G )  for 
K' = 1.5, T' = 2.0, kll = k12 = 1, ki l  = ki2 = 0 and for three different values of the time 
constant Ti  (=0.1, 0.2 and 0.3) which accounts for another type of delay, resulting from 
the retardation in the steering gear. If Ti  becomes large the permissible 9; values should 
be reduced in order to keep the "total delay" confined. Schiff & Gimprich (1949) had 
considered for T i  a value about 0.1. The system of (S), (9) was solved also numerically. 
These solutions were found essentially coinciding with the third-order approximations. In 
some special cases we can eliminate the sinusoidal terms from the pair of equations (8) 
and (9) and proceed analytically. Two such cases are considered below in parallel: (a) 
when k i l  = G2 = 0 (only proportional delays); and (b) when ki2 = k i l  = O  (one 
proportional and one rate delay). Then, by shifting the sinusoidal terms of (8) and (9) to 
the right-hand-side, raising to second-order and adding we obtain respectively the 
following equations: 

The above can be solved analytically for y only when the delays are identical because 
then they both reduce into third-order polynomials of y2 : 
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analytical 
- - - first-order 

third-order and 

0 0.1 0.2 0.3 0.4 0.5 

Figure 1. In the lower figure are shown the stability boundaries when two independent 
proportional delays, rll' and rlz', exist. Three different values of the rudder's time 
constant, TA: are considered. Analytical (1st order, 3rd order and exact) and numerical 
solutions are presented. The 3rd order solution practically coincides with the numerical. 
The required order of the series depends in general on the lug magnitude and the 
considered function type. The upper figure shows the required number of terms for 
approximation of the sine function for different intervals of the argument. 



Kostas J. Spyrou 429 

The exact solutions of (l5a) and (15b) can be found analytically with Mathernatica (their 
detailed forms are omitted due to their length). In Figure 1 the acceptable analytical 
solution of (15a) is compared with the approximate solution found earlier and also with a 
numerical solution. 
If is assumed that the rudder obtains the desired angle almost instantaneously, that means 
Ti  = 0, then (15a) and (15b) can be simplified further since they reduce into the 
following quadratics in terms of y2: 

Equation (16a) and (16b) have two real and two imaginary roots. As explained in section 
3 we are interested only in the real roots which are given by: 

With substitution of yl  or y2 into the simplified version of (9) we derive the stability 
boundary. For example for system (a) with two independent proportional gains this is 
given by the following equality (see also Figure 2): 
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The parametric equations of the poles of the full Nomoto's equation are derived in the 
Appendix. 

0'  l 
0.5 1 1.5 2 2.5 3 

proportional gain k , ,  

Figure 2. Stability boundaries on the plane of proportional gain k I I  versus the delay 
magnitude r1l: ,for three different pairs of K'and T :  

4. Continuous delay 

Eq. (4) will be combined now with an autopilot equation featuring finite continuous time- 
lags in the yaw angle and rate feedback terms: 

The weighting functions nrl(r') and w2(r') are scaled for the delay interval so that they 
0 

satisfy the relation I wi(r')dr' = 1, i = 1,2. The combination of (4) and (19) yields: 
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For simplicity will be assumed that wl(r') = w2(r') = w(r'). Let's select for demonstration 

purposes a weighting function given by w(r') = . After calculation of a 
2 

number of integrals, the characteristic function of (20) is expressed as: 

By substituting 1 = i y and setting the real and imaginary parts equal to zero, we obtain: 

The system of (22) and (23) was solved numerically. The solution, for K' = 1.5, T' = 2.0 
and k, = ki  = 1, is shown in Figure 3 (the arrows point towards the area of stability). The 
weighting functions can be generalized by considering a family with the form 

each member of which is associated with the delay interval 
2 

[-:, 01where n is a positive integer. Thus by increasing n the delay interval becomes 

smaller (see the inserted graph of Figure 3). As all these functions satisfy automatically 
0 

the condition I w(rt)dr' = l the area is always equal to 1.0. The stability boundaries that 
1 -- 
n 

correspond to n = 2 and n = 3 can also be seen in Figure 3. 

5. Delay and parametric instability 

Let's introduce now at the right-hand-side of (4) a term playing the role of sinusoidal 
wave excitation in following waves, Spyrou (1997): 

T'v' + Ijl' = K'6 + ~ ' y c o s ( w k  t') (24) 

Above, A' is the amplitude of wave excitation and wk is the encounter frequency. 
Consider rudder control as follows : 
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proportional gain k, 

Figure 3. Stability boundaries for "continuous-type" delay, based on a weighting 
n n 

function given by the expression w(r? = ( n  Z) cos (nr'Z), with r ' ~  [-I,O].. 

The parameter v, represents the desired heading of the ship. Substitution of (25) into 
(24) yields: 

The version of (26) without delay has been shown to be Mathieu-type, with simultaneous 
parametric and constant direct forcing, Spyrou (1997): 

The quantity W; represents the natural frequency of the automatically controlled ship in 

1 +%K' is the yaw and is given by the relation W; = Furthermore, = - 
T' 
K' 

A' is the amplitude of parametric forcing, and j = k17yr, is the damping, h = - 
kl K' T 

constant independent forcing (which, given the wave, depends on the desired heading, 
v,). 
Given that in practice these delays are not expected to be large quantities, it is possible to 
develop some understanding of how they tend to influence behaviour by applying the 
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following first-order approximations: 

v ( t l  - r,') = ~ ( t ' )  - .;*'(tl) 

$(t' - ri)  = t j ( t l )  - r-j $'(tl) 

Substitution into (26) yields: 

[1-riki$)t,?'+(L- q'k, F "' + ki - " ' )  v' + [ k, - K' T l  - -cos(w: A' T 1  t') 
K' 

T' T' 

From a comparison of (27) and (29) the following relationships are deduced: 

where and pdel(') are respectively, yaw natural frequency and damping of the 

ki 2 > 0 delayed system at first approximation. It is reasonable to assume that 1 - r; - 
kl 

since r; was considered as small quantity, k; is normally about 1.0 while an average 
1 K' 

value of -- (that is the turning index P of Norrbin) can be taken to be about 0.5. 
2 T' 

According to the classical analysis of Mathieu's equation, for j = 0 (that means basically 
I,!/, = O), the boundary of the first instability region (principal resonance), when damping 

can be treated as a small quantity, is obtained from the condition: h,in =g. The 
m;) 

minimal amplitude of parametric forcing for the delayed system, h,indel(l) will be at first 

order: 

where hmin is the minimum amplitude required to destabilize the system when there is no 
delay. From (31) is deduced that the relation between hmin and hmindel can be 
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approximated with a straight-line. Such plots are shown in Figure 4 for 
K' 

= 0.75, kl = k; = 1 and various values of q' and ri. AS can be seen, when q' = 0 some 
T' 

small rate delay ri > 0 can in fact lift the limit of allowable parametric excitation before 
instability is incurred. However if both delays exist the allowable excitation is much 
smaller. Thus the presence of the proportional delay clearly enlarges the instability 
region. On the other hand it can be derived from (31) that the effect of the differential 

delay is beneficial (under the condition l - r; %m6 > 0) i t  
kl 

0.2 0.4 0.6 0.8 1 

critical excitation h,, (without delay) 

Figure 4. Effect of delay on the limiting amplitude of parametric excitation required for 
instability in the region of principal resonance. When the proportional delay rl' is zero 
some small differential delay r2 'can lift the minimal allowed excitation. When both delays 
are present the allowed excitation is much lower compared to that of a system with no 
delay. 

If a second-order approximation is considered, then the differential equation becomes a 
third-order equation of I+/ due to the presence of the r p  term that multiplies W'(3 ) .  This is 
undesirable because we can no longer gain insights on the basis of the well known 



Kostas J. Spyrou 435 

properties of Mathieu's equation. If we discard r; and proceed only with the first delay, 
q', we obtain: 

K' K' 
In Figure 5 is shown the dependence of hnde' on - with fixed h,in. In the - range 

T' T' 
[O, 151 the difference between first and second-order approximations is hardly noticeable. 

K' 
Figure 5. Dependence of the critical amplitude of parametric excitation with -, The 

T 

magnitude of proportional delay is varied. The first and second-order solutions are 
practically indistinguishable for the considered range. 

6. Time-lags as bifurcation parameters of multi-degree and nonlinear systems 

The final case to examine will be about the effect of delayed control on the rather 
complicated dynamics of a small fishing vessel with four degrees of freedom (surge- 
sway-yaw and roll). This ship can exhibit in steep waves very rich dynamic behaviour, 
including several bifurcations and even giving rise to a short chaotic regime, Spyrou 



436 On course-stability and control delay 

(1995 & 1996). We shall examine how different magnitudes of delay in the proportional 
or differential terms of the autopilot equation influence the onset of self-sustained 
oscillations which arise through a Hopf bifurcation, when the ship is in surf-riding 
condition. 
Undesirable time-lags are often behind self-sustained oscillatory behaviour in several 
dynamical systems. Also, it is reasonable to expect that as the delays increase in 
magnitude the oscillations will tend to appear at lower excitation levels. Once more, the 
delays ought to be in a practical sense low and we shall proceed with first-order 
approximations. The autopilot equation is: 

First-order approximation : 

If we set k2 = k; - kl if and k3 = -k; r i ,  then: 

It becomes apparent from (36) that, at first order, the existence of delay in the 
proportional term appears as a reduction of the differential gain. Similarly, the presence 
of delay in the differential term plays the role of negative acceleration gain which makes 
the autopilot less capable in dealing with rapid yawing motions. As an application we 
selected the following dimensional values for the autopilot parameters: TA = l.Os/rad, 

a H 1  
kl = 1.0 rad and k2 = 1.0 radls. The wave characteristics are, - = 2.0 and - = -. 

L a 20 
At first the delay of the differential term was fixed at r2 = 0.6s and the proportional delay 
rl was varied. For each rl the corresponding stationary state was numerically identified. 
Furthermore, for each state stability analysis was automatically carried out, based on 
numerical local linearization and calculation of eigenvalues. The local dynamics are to a 
great extent governed by the behaviour of a critical conjugate pair of eigenvalues whose 
real part is near to 0 and thus "controls" the onset of the Hopf bifurcation. This real part 
has been plotted in Figure 6 against the desired heading v,. Clearly, by increasing rl the 
Hopf bifurcation arises at lower v,. A similar trend is observed when rl is fixed and rz is 
varied, Figure 7. Interestingly, the curve obtained for rl = 0.8s and r2 = 0.9s crosses 
twice the zero level and in the near-zero region of the control parameter v, the considered 
eigenvalue-real-part turns positive. 
In Figure 8 is shown the locus of the Hopf bifurcation which is also the threshold of self- 
sustained oscillatory behaviour. The Hopf bifurcation can arise at low desired headings if 
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the delays are large enough. Detailed analysis in this area entails however higher-order 
approximations. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

desired heading yrr (rad) 

Figure 6. With increase of the proportional lug rl the critical pair of eigenvalues that 
govern the onset of instability tend to acquire positive real part at a progressively lower 
desired heading. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

desired heading vr (rad) 

Figure 7. Similar investigation as in Figure 6, this time however with the proportional 
delay rl fixed and the "rate" delay 1-2 varied. At relatively high values of r2 there is 
double crossing of the zero axis. This means that Hopf bifurcations arise at two different 
values of desired heading. 
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0 0.2 0.4 0.6 0.8 1 

delay in differential term, r2 

Figure 8. The boundary of self-sustained oscillatory behaviour, on the plane of "rate" 
delay r2 versus the desired heading v,. 

7. A note on the effect of phase lead 

When advanced actions are considered in the control law, the rv terms of (1) will be 
negative. It is interesting that sometimes we obtain a characteristic function which is 
essentially identical with this of a delayed system. A simple example is a second-order 
d.d.e with time-lag r both in damping and in restoring, Minorsky (1962): 

The corresponding characteristic equation is ,l2 + ilae-" + be-'' = O which can be 
written also as ,l2 er'l + Aa+ b= 0 .  However the last expression is basically the 
characteristic function of a system with an "advanced inertia" : . 

8. Concluding remarks 

The effect of various types of discrete and continuous delay were considered in the 
feedback loop of a "basic" course-keeping system. Expressions for the amount of 
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admissible proportional and rate delays of constant type, as functions of the K', T' 
quantities of a ship, the gain values and the rudder's time constant (which is also a delay, 
however of exponential type) were presented. The higher the gains the lower the tolerable 
delays. For a ship with K' = 1.5, T' = 2.0, unit proportional gain, rudder time constant 
TA = 0.1, and two independent proportional delays 4, q2, stability exists if the 
approximate relationship 42 + h2 5 0S2is satisfied (Figure 1). 
The effect of continuous delay was examined with a sinusoidal-type weighting function. 
Due to the fact that the general approach does not distinguish between lags in the control 
system and retardations in the actual response terms, this same approach can be very 
effective also in handling hydrodynamic memory-effect problems. This area of research 
is currently under consideration. 
The effect of delay in steering control when large following/quartering waves are present 
was also examined for two specific cases. The first case was a mechanism of parametric 
instability of yaw, resulting from the combined effect of the wave and the autopilot. First- 
order approximations of the relation linking the amplitude of parametric excitation with 
the delays were presented for the stability boundary of the principal resonance. If there is 
no proportional gain, some small delay may in fact beneficial for stability. If however 
both delays exist the allowable excitation is much lower. 
Finally the problem of surf-riding in quartering waves with delayed control was 
investigated. Self-sustained oscillations arise through a Hopf bifurcation at a critical 
desired heading. The oscillation threshold was correlated with the magnitudes of 
proportional and rate delay. Increased delays shift this threshold at lower desired 
headings. Notably, for large delays oscillations are possible even at exactly following 
waves. 
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Appendix 

Let's consider the "full version" of Nomoto's linear manoeuvring model: 

T;T , '~ ' (~ )+(T;+T , ' )~ '+@'=  K ' ~ + K ' T ; ~ '  

Consider also a control law with delays in the proportional and rate terms: 

. 1 
6' = -1-6 - k1 ~ ( t '  - q') - k; @(t' - r,')] 

T i  

After elimination of 6 and 8' from (11) and (12) we obtain: 

Proceeding as for the lower-order system of section 3, we first derive the characteristic 
function D(A) that corresponds to (13). Then, by substituting A = iy and requesting the real 
and imaginary parts of D(A) to be equal to zero, we obtain finally the following pair of 
equations: 
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Generally, the roots of the two equations (14) and (15) cannot be found analytically. If Td 
is approximately zero, we obtain the simpler system : 



Kostas J. Spyrou 443 

By considering identical delays, q'= ri = r r ,  and by raising, as in section 3, to second 
order, we obtain finally the following cubic equation of y2 whose solutions can be found 
analytically: 




