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ABSTRACT:  An experimental investigation on the generation and character of sloshing of a para-
metrically excited liquid inside a rectangular tank is reported. The focus is set on the phenomenon of 
liquid surface bi-stability, i.e. when, for identical excitation parameters’ values, sloshing may or may not 
be activated, depending on the initial state of the surface when the excitation is applied. From an earlier 
theoretical investigation it had been conjectured that, on the plane of frequency versus amplitude of exci-
tation, the area of bi-stability is located adjacently to the principal resonance region of the correspond-
ing Mathieu-type system. This was produced from a nonlinear mathematical model focused on the first 
free surface mode, derived by eliminating higher modes through an adaptive mode-ordering scheme. The 
comparison against experimental results presented in the current paper corroborates that the theoretical 
predictions are fair. The experiments provide also evidence about the activation of higher modes and the 
occurrence of phenomena of mode competition.

for the full nonlinear viscous problem, up to rela-
tively high excitation amplitude. They reproduced 
the remarkable square and hexagonal free surface 
patterns that had been experimentally captured 
earlier by Kityk et  al. (2005). Also, the issue of 
mode competition had been investigated experi-
mentally by Simonelli & Gollub (1989) and by 
Craik & Armitage (1995) for shallow depth tanks. 
A comprehensive collection of earlier efforts con-
cerning the nonlinear behaviour of liquids carried 
in tanks of various shapes and subjected to para-
metric excitation can be found in Ibrahim (2005).

Research on the problem of liquid sloshing in 
a rectangular vertically excited tank was initiated 
recently in our group. A description of our model-
ling approach, implemented so far for 2-D cases, is 
presented in Spandonidis & Spyrou (2011 & 2012). 
It is based on the adaptive multimodal analysis 
introduced by Faltinsen & Timokha (2001, 2009), 
applied earlier for directly excited sloshing. Cou-
pling of the model with a “continuation algorithm” 
of nonlinear dynamical systems corroborated that 
a bi-stability region exists, located entirely inside 
the domain where, from a linear perspective, the 
surface should appear as quiescent. This analy-
sis revealed further that, in line with well-known 
behaviour of nonlinear parametrically excited 
systems, the lower boundary of the bi-stability 
region is defined by the locus of the folding points 
of the curve of limit-cycle amplitude. The intrigu-
ing feature of this region, yet a common one for 
those familiar with strongly nonlinear behaviour, 

1  InTroduction

As “parametric sloshing” is meant the motion of a 
liquid’s free surface, triggered by an excitation that 
acts perpendicularly to the undisturbed free sur-
face. As pointed out many years ago, for vibrating 
structures containing liquids such a phenomenon 
may sometimes incur catastrophic consequences 
(Dodge 1966). Ship motions along the gravity vec-
tor, thus parametrically exciting the transported 
liquids, arise physically in combination with other 
rectilinear or angular ship motions. Nevertheless, 
it is very useful to understand fundamentally the 
various ways in which sloshing motion can appear, 
especially when this happens quite unexpectedly.

The seminal investigation of Benjamin & Ursell 
(1954) produced a first glimpse of the stability 
chart associated with the behaviour of the free 
surface of a parametrically excited liquid. It was 
derived from a linear Mathieu-type equation. 
Whilst this captures the region of linear instability, 
it does not suffice for predicting the ensuing free 
surface elevations, yielding unrealistic infinite wave 
amplitudes inside the instability region. In a series 
of papers, Miles investigated parametric sloshing 
on the basis of an averaged Lagrangian approach, 
using weakly nonlinear models (see for example 
Miles 1994). Extending Miles’ approach, Decend 
(1995) and Decent & Craig (1995) found hysteresis 
due to competition between the “finite-amplitude” 
and the “flat-surface” solutions. Perinet et  al. 
(2009) carried out three-dimensional simulations 
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is that it is initial-conditions-dependent; i.e. one 
may obtain a stable wavy surface or a flat surface 
depending on how much disturbed the free surface 
had been when the harmonic excitation was firstly 
applied.

In the presented work the main objective was 
the experimental reproduction of  parametric 
sloshing. The experiments were conducted using 
a shaking table facility discussed in a later section. 
Attention has been paid on activating wave modes 
only along the longer tank side. Even though com-
plex excitation scenarios could easily be examined, 
at this stage was assumed harmonic vertical forc-
ing with small to moderate amplitude. Excitation 
frequencies were kept around the frequency of 
principal resonance of  the lowest mode (in refer-
ence to the longer side). Results have been com-
pared against the relevant generic linear stability 
chart as well as against predictions obtained by 
the modal analysis method (that is briefly outlined 
in the following section). The applied mode order-
ing scheme leads to a fundamental core model 
comprised of  a single, Mathieu type, 2nd order 
ordinary differential equation, presenting two 
third-order nonlinearities: one due to a product 
of  elevation with the square of  elevation velocity; 
and another due to a product of  elevation squared 
with acceleration.

2  SUMMARY OF THEORETICAL RESULT

The height-to-length ratio of the considered rec-
tangular tank is h l = 0 4. . The hydrodynamic 
problem has been formulated in terms of Laplace’s 
equation for the velocity potential Φ(y, z, t) applied 
throughout the fluid volume Q(t). The well-known 
boundary conditions are enforced on the free sur-
face Σ(t) and on the tank surface S(t).

Faltinsen & Timokha (2001 & 2002) con-
verted the governing equations into an infinite-
dimensional system of ODEs, postulating Fourier 
series representations for describing surface’s ele-
vation ζ(y, t) and the velocity potential Φ(y, z, t), 
as indicated below:
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The axes origin is fixed at the middle of the 
undisturbed surface. The y axis points to the 
right along the length of the tank and the z axis is 
vertical, pointing upwards. βi(t) corresponds to the 
time-dependant free surface elevation that occurs 
due to the ith natural mode. 

Keeping nonlinear terms up to third-order, 
applying a mode ordering scheme based on β1 = 
Ο(ε1/3), βµ = O(ε), µ > 1 finally retaining β1 only, 
incorporating damping and assuming perpendicu-
lar harmonic excitation n3 = n3α cos(σt), the infinite 
system of ODEs is reduced for purely vertical exci-
tation to the following simple equation:
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β1 stands in this case for the time-dependant free 
surface elevation at y = -l/2; i.e. at the left tank wall. 
σµ is µth natural frequency and δ is Kronecker’s 
symbol; while d, t are functions of liquid’s height-
to-tank-length-ratio. It is apparent that omission 
of the nonlinear terms leads to a Mathieu-type 
system.

The mathematical model was coupled to the 
computational algorithm MATCONT (Doodge 
et al. 2003). This algorithm is much more than an 
ODE solver, allowing to trace efficiently steady-
state solutions of Eq. 2 as one varies either the fre-
quency ratio or the excitation amplitude (or even 
both simultaneously). Stability analysis yielded that 
the forcing-versus-frequency parameters’ plane is 
divided into three areas. Area A is host to quiescent 
steady solutions: i.e. every vertical external excita-
tion leads invariably, no matter what the initial 
state of the free surface was, to a flat liquid surface. 
Area B is the classical area of instability where the 
excitation generates free surface oscillation. Typi-
cal parametric oscillations associated with this area 
have frequency about half the forcing frequency. 
However, other much more complex responses can 
be found here too. Area C is the one where bi-stable 
behaviour is exhibited. The same external excita-
tion leads either to a quiescent surface or to a wavy 
one, depending on the initial condition (determined 
through the initial values of βi and ji).
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3  EXPERIMENTAL SETUP

In Figure  1 is shown the vibration testing facil-
ity (“shaking table”) of NTUA’s School of Naval 
Architecture and Marine Engineering. It is based 
on a table platform that is able to perform Six 
Degree Of Freedom (6-DOF) low frequency 
motions according to appropriate input time his-
tories, emulating motions performed by ships in 
waves. The motions can reach amplitudes of 30o 
and 0.5 m. In Table 1 are collected the key features 
of the shaking table.

A Labview interface program reads or generates 
desired time histories and computes the appropri-
ate actuator motions. To translate the platform’s 
calibration/measurement to real motion, real time 
PID loops are used that control the six actuators. 
Moreover a table-mounted Miniature Attitude 
Heading Reference System (AHRS) with GPS 
(Microstrain 3DM-GX3-35) reports to the main 
PC the exact position of the table at any time.

Flow visualization is possible by the use of a high 
speed video system. This system consists of two 
high speed video cameras (Trouble-Shooter HR—
color) with a resolution of 1280 × 1024 pixels and a 
maximum speed of 16,000 images per second that 
cooperate in a master/slave mode. A specialized 
software program (MIDAS 4.0) is used for event-
capture camera control, synchronization with data 
sources, and automated monitoring.

The use of two PCD-300B sensor interfaces 
working in a master/slave mode enables the main 
PC to perform up to 16 different stress and force, 
pressure, acceleration and displacement measure-
ments through the use of strain gages and trans-
ducers, respectively. DCS 100  A dynamic data 
acquisition software enables easy, interactive set-
ting of measuring conditions and sensor informa-
tion as well as monitoring of measuring data on 
numeric and various graph windows.

The tank that was used is shown in Figure  2. 
It was initially designed for cargo shift investiga-
tions (IMO 2012). The tank is made from non-
coloured Perspex of 20  mm thickness to permit 
direct observation. Its size is 0.6 m × 0.4 m × 0.4 m 
(width  ×  length  ×  height). To keep the scenario 
close to the one that had been investigated by the 
theoretical approach (that is, to have finite liquid 
depth with h/l = 0.4), we partly filled the tank with 
water up to 0.24 m height.

The geometry of the tank and the height of the 
liquid yield the natural frequencies of the system, 
which depend either on tank’s length or tank’s width 
(as a matter of fact in height-to-length and height-
to-width ratio). In Tables 2 and 3 are presented the 
natural frequencies corresponding to the first few 
modes, for longitudinal and transverse waves. In 
general, complex wave formation can be observed, 
featuring combined longitudinal and transverse 
oscillations (one example is shown in Fig.  3). Figure  1.  The shaking-table of the School of Naval 

Architecture and Marine Engineering, National Techni-
cal University of Athens.

Table 1.  Shaking-table properties.

Table size 120 cm × 120 cm
Degrees of freedom Six (6)
Max. payload 2 tons
Max. displacement in heave* 30 cm
Max. velocity in heave* 50 cm/s
Max. displ. in sway/surge* 30 cm
Max. velocity in sway/surge* 30 cm/s
Max. displ. In in roll/pitch/yaw* 30 deg
Max. velocity in roll/pitch/yaw* 15 deg/s
Frequency range 0–8 Hz
Max acceleration, any axis 0.3 g

*Reduced range when complex movements are 
performed.

Figure 2.  The orthogonal tank used for the experiments. 
It is made of Perspex of 20 mm thickness.
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However, by restricting the range of excitation fre-
quency around 13 rad/s (the frequency whereabout 
the vertex of the principal resonance region for the 
corresponding 2D tank should be expected) and 
keeping the excitation amplitude relatively low, 
the active modes associated with tank length can 
be relatively safely investigated, thus practically 
reducing the 3D to a 2D problem (nevertheless, 
some interference should still be expected since the 
1st, 2nd and 3rd natural frequency of the trans-
verse waves (see Table 3), are close to the borders 
of the investigated frequency range).

4  EXPERIMENTAL RESULTS

Over 1200 “runs” were performed, separated 
into two sets, according to the initial free surface 

condition. The excitation was always harmonic 
and along the vertical axis. A dense grid of exci-
tation amplitudes and frequencies was examined. 
The frequency range was from 10 to 15 rad/s and 
the amplitude range was from 0 to 0.025  m. In 
order to verify the results, each experiment was 
repeated twice.

4.1  Zero initial conditions

Sufficient time was allowed between consecutive 
runs in order for the free surface to calm down 
and thus achieve practically a “zero” initial condi-
tion for the ensuing run. The free surface dynamic 
response was labelled as “stable” if  at the end of 
the “run” it appeared to be calm, like at the begin-
ning of the run. It was “unstable” if, towards the 
end of the run, a non-decaying wavy surface was 
prevalent. In Figure  4 are shown time instances 
of liquid’s surface motion for two different excita-
tions, exhibiting two different wave patterns: that 
are either the first (up) or the second (down) anti-
symmetric modes (modes that correspond to the 
3rd and 1st natural frequency or else to 3rd mode’s 
fundamental and 1st mode’s principal resonance, 
respectively).

Table  2.  Natural frequencies according to 
length of tank.

Odd  
modes

Value  
(rad/s)

Even  
modes

Value  
(rad/s)

1st 6.60811 2nd 10.0693
3rd 12.4069 4th 14.3333
5th 16.0257 6th 17.5553
7th 18.9619 8th 20.2712

Table  3.  Natural frequencies according to 
width of tank.

Odd  
mode

Value  
(rad/s)

Even  
mode

Value  
(rad/s)

1st 8.5775 2nd 12.4069
3rd 15.2032 4th 17.5553
5th 19.6275 6th 21.5008
7th 23.2235 8th 24.82

Figure 3.  Combined wave in longitudinal and in trans-
verse direction. The tank is excited along the gravity vec-
tor. The tank presents a slight tilt around the transverse 
axis.

Figure  4.  Examples of obtained wave forms: (upper) 
1st anti-symmetric mode corresponding to the 1st natural 
frequency (excitation frequency: 12.9  rad/s, amplitude: 
1.9  cm); (lower) 2nd anti-symmetric mode correspond-
ing to the 3rd natural frequency (excitation frequency: 
12.13 rad/s, amplitude: 2.1 cm).
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In Figure 5 is summarised the region of insta-
bility (located to the interior of the solid line), as 
obtained from the campaign of runs with zero 
initial conditions. On the graph are superimposed 
theoretical predictions for the corresponding lin-
ear Mathieu-type model of the 1st (dotted line) 
and 3rd (dashed line) natural mode. The coloured 
region corresponds to unstable free surface. Theo-
retical predictions appear well located against the 
measurements.

Inside the instability area was observed mode 
competition. It appears that an internal border 
exists (not shown). To its left, every excitation 
yields the pattern of the 3rd mode (full wave oscil-
lation); whereas to its right, is realised the 1st mode 
(half  wave oscillation). However, around the bor-
der these tests had to be kept on for longer time, 
until the steady pattern emerged.

4.2  Non-zero initial conditions

In the second series of tests, the same ranges of 
frequency and amplitude were examined. How-
ever, shortly before each run, a short violent roll 
excitation was applied to the tank, so that the free 
surface acquires some kind of oscillatory pat-
tern when the parametric excitation was applied. 
Thus a “non-zero” initial condition was achieved. 
The obtained picture of the stability region pre-
sented notable differences compared to that of 
the first series. Two were the key findings of this 
investigation:

a.	 The instability area is much wider compared to 
that obtained from the first series (Fig. 6).
This supplies concrete experimental evidence 
about the existence of an area where initial 
conditions affect crucially liquid’s dynamic 
response.

In Figure  7 is shown a comparison of two 
qualitatively different steady-state free surface 

Figure 5.  Instability chart (solid line). A comparison is 
shown against linear theory predictions for the principal 
parametric instability of the 1st mode (dashed line) and 
the fundamental instability of the 3rd (dotted line).

Figure  7.  Liquid response obtained for initially hori-
zontal free surface (upper); and for initially disturbed free 
surface (lower). Excitation frequency and amplitude were 
11.7 rad/s and 1.5 cm respectively.

Figure  6.  Comparison of experimental results for the 
two series of tests. Results of the 1st series (zero initial 
conditions) are indicated by the dashed line while those 
of the 2nd (non-zero initial conditions) are indicated with 
the solid line. Area A corresponds to a flat surface steady-
state and area B to a wavy one. In area C are hosted the 
initial-condition-dependent cases.

responses obtained inside the bi-stability area 
(area C). In the upper picture the surface retains 
the calm water characteristics despite the ver-
tical oscillation of the tank. In the lower pic-
ture, the surface oscillates according to the 1st 
mode.

b.	 A second notable finding is that, inside the 
bi-stability area C the free surface follows 
quite different patterns under slightly differ-
ent excitation frequency and amplitude values. 



196

In contrast to what happens in area B where 
purely fundamental and primary resonance of 
3rd and 1st mode respectively were observed (as 
well as evidence of their competition appeared), 
in area C additional patterns appeared. Specifi-
cally, for excitation frequency between 11 and 
11.2 rad/s and for amplitude higher than 1 cm 
the free surface followed sometimes the 5th 
natural mode (3rd anti-symmetric mode) as 
shown in Figure 8a. Even higher order natural 
modes appeared. In Figure 8b is shown a time 
instance where the 7th natural mode (4th anti-
symmetric mode) has appeared. These phenom-
ena possibly have to do with higher resonances 
of these modes (higher than fundamental). It is 
noted that double period phenomena are also 
expected to occur inside the instability area, for 
high enough excitation amplitudes (Ibrahim 
2005).

5  EXPERIMENTAL VS NUMERICAL 
RESULTS

Comparison between the findings from the experi-
ments and from the predictions of our mathemati-
cal model is presented in Figure 9. The predictions 

of the numerical method are in fair agreement with 
the experimental results. One difference is that the 
instability area obtained from the experiments is 
wider. However, the numerical model had been 
focussed only on the principal resonance of the 
first mode and furthermore, it was restricted to 
non-linear terms up to the 3rd order.

Another difference is that the bi-stability area 
appears wider too in the case of the experiments. 
This can be understood since higher order natu-
ral modes (2nd, 5th and 7th natural modes) were 
activated in the tests which however were not 
accounted in the mathematical model. It should be 
noted that more complex models involving these 
modes are currently under investigation.

6  CONCLUSIONS

By experimental techniques 2-D liquid sloshing 
in a rectangular, vertically excited tank has been 
investigated, with focus on validating the predic-
tion of a bi-stability area in parameters’ plane. 
The results obtained from the experiments were 
compared against numerical results obtained from 
modal analysis. The investigation was limited to 
a specific finite liquid depth, corresponding to a 
tank-height-to-depth ratio of 0.4. The experiments 
indeed confirm the existence of an area of bi-
stability of parametrically excited sloshing. Inside 
this area, one may obtain a stable wave or a flat 
surface, depending on the free surface’s state when 
the excitation was firstly applied.

The theoretical predictions are in good qualita-
tive agreement with the real free surface dynamics, 
despite the assumption of a single dominant mode 
and the exclusion of the higher order non-linear 
terms.

A next step towards confirming the capability 
of the approach to produce more realistic results 

Figure  8.  Free surface oscillations in different modes. 
In the upper picture (obtained with excitation frequency 
11.12  rad/s and amplitude 2.1  cm) is captured the 3rd 
anti-symmetric mode (5th natural frequency). In the 
lower picture, is captured the 4th anti-symmetric mode 
(7th natural frequency). The excitation frequency was 
14.39 rad/s and the amplitude was 1.7 cm.

Figure  9.  Comparison between numerical (solid line) 
and experimental (dotted line) results. Instability chart 
indicating the three different areas.
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will be the investigation of the dynamic behaviour 
associated with the immediately higher order non-
linear model and new validation of these numerical 
predictions by further series of experiments.
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